|
01. Введение и список использованной литературы
|
|
02. Системы линейных уравнений. Метод Гаусса
|
|
03. Определители. Определители второго и третьего порядков
|
|
04. Комплексные числа
|
|
05. Перестановки и подстановки
|
|
06. Определители n-го порядка
|
|
07. Матрицы. Сложение матриц. Умножение матрицы на действительное (комплексное) число
|
|
08. Простые и двойные суммы
|
|
09. Умножение матриц
|
|
10. Умножение квадратных матриц одного порядка
|
|
11. Решение матричных уравнений
|
|
12. Линейные пространства. Алгебраические операции
|
|
13. Определение и примеры линейных пространств
|
|
14. Линейная зависимость и независимость векторов
|
|
15. Базис векторного пространства. Координаты вектора
|
|
16. Матрица перехода. Связь координат вектора в разных базисах
|
|
17. Подпространства линейных пространств
|
|
18. Изоморфизм линейных пространств
|
|
19. Ранг матрицы. Системы линейных уравнений
|
|
20. Решение системы линейных уравнений с помощью ранга матрицы
|
|
21. Пространство решений системы линейных однородных уравнений
|
|
22. Связь решений однородной и неоднородной систем линейных уравнений
|
|
23. Задание подпространств конечномерного линейного пространства с помощью систем линейных уравнений
|
|
24. Линейные операторы. Определение, примеры и свойства линейных операторов
|
|
25. Область значений и ядро линейного оператора
|
|
26. Матрица линейного оператора. Связь координат вектора и его образа
|
|
27. Связь матриц линейного оператора в разных парах базисов
|
|
28. Линейные преобразования линейного пространства
|
|
29. Невырожденные линейные преобразования
|
|
30. Собственные векторы и собственные значения линейного преобразования
|
|
31. Линейные преобразования в базисе из собственных векторов. Линейные преобразования с простым спектром
|
|
32. Евклидовы пространства. Скалярное произведение векторов, его свойства. Определение и примеры евклидовых и унитарных пространств
|
|
33. Матрица Грама в евклидовом пространстве
|
|
34. Введение метрики в евклидовом пространстве
|
|
35. Ортонормированные базисы в евклидовом пространстве
|
|
36. Изоморфизм евклидовых пространств
|
|
37. Ортогональные линейные преобразования
|
|
38. Сопряженные линейные преобразования
|
|
39. Самосопряженные (симметрические) линейные преобразования
|
|
40. Билинейные формы. Линейные формы
|
|
41. Квадратичные формы
|
|
42. Приведение квадратичной формы к каноническому виду с помощью выделения полных квадратов
|
|
43. Закон инерции квадратичных форм
|
|
44. Положительно определённые квадратичные формы
|
|
45. Распадающиеся квадратичные формы
|
|
46. Вопросы для подготовки к колоквиуму. «Определители. Матрицы. Линейные пространства»
|
|
47. Вопросы для подготовки к экзамену
|