23.05. Переход от одного опорного решения к другому
Наличие положительной оценки свободной клетки (ΔIj > 0) при проверке опорного решения на оптимальность свидетельствует о том, что полученное решение не оптимально и для уменьшения значения целевой функции надо перейти к другому опорному решению. При этом надо перераспределить грузы, перемещая их из занятых клеток в свободные. Свободная клетка становится занятой, а одна из ранее занятых клеток — свободной.
Для свободной клетки с ΔIj > 0 строится цикл (цепь, многоугольник), все вершины которого кроме одной находятся в занятых клетках; углы прямые, число вершин четное. Около свободной клетки цикла ставится знак (+), затем поочередно проставляют знаки (—) и (+). У вершин со знаком (—) выбирают минимальный груз, его прибавляют к грузам, стоящим у вершин со знаком (+), и отнимают от грузов у вершин со знаком (—). В результате перераспределения груза получим новое опорное решение. Это решение проверяем на оптимальность, и т. д. до тех пор, пока не получим оптимальное решение.
Рассмотрим переход от одного опорного решения к другому на заданном примере.
Строим цикл для клетки (1,3), имеющей положительную оценку. У вершин цикла ставим знаки (+) и (—) и записываем грузы:
У вершин со знаком (—) выбираем минимальный груз, он равен 60. Его прибавляем к грузам, стоящим у положительных вершин, и отнимаем от грузов, стоящих у отрицательных вершин. Получаем новый цикл:
Новое опорное решение:
Проверим полученное решение на оптимальность. Для этого запишем его в распределительную таблицу, найдем потенциалы занятых и оценки свободных клеток (табл. 23.4).
Имеем
Построим цикл для клетки с положительной оценкой Δ21 = 1:
Произведем перераспределение грузов:
Получим новое решение, которое занесем в табл. 23.5. Проверим его на оптимальность.
Получим
Все оценки свободных клеток отрицательные, следовательно, найденное решение оптимальное. Итак,
Стоимость транспортных расходов равна
По сравнению с исходным опорным решением транспортные расходы уменьшились на 1610 — 1280 = 330 усл. ед.
< Предыдущая | Следующая > |
---|