23. Нормальное (Гауссовское) распределение
Определение10.2: Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается следующей плотностью вероятностей:
, где
.
График функции F(X) имеет следующий вид:

График плотности нормального распределения называют Нормальной кривой или Кривой Гаусса.
Нормальное распределение определяется двумя параметрами:
и
. Вероятностный смысл этих параметров таков:
есть математическое ожидание,
- среднее квадратическое отклонение нормального распределения, то есть
и
.
График функции распределения нормальной случайной величины имеет следующий вид:

Замечание: Стандартным нормальным или Нормированным называют нормальное распределение с параметрами
и
. Например, если X – нормальная величина с параметрами
и
, то
- стандартная нормальная величина, причем
и
. Плотность стандартного нормального распределения имеет вид
.
Данная функция табулирована (см. приложение 1).
Функция распределения
нормального распределения имеет вид:
.
Функция распределения
Стандартного нормального распределения имеет вид:
.
Замечание:
.
Замечание: Вероятность попадания стандартной нормальной величины X в интервал (0 , X) можно найти, пользуясь Функцией Лапласа
:
,
И
.
Функция
табулирована (см. приложение 2).
| < Предыдущая | Следующая > |
|---|