4.03. Понятие линейной зависимости и независимости функций
Определение 1. Система функций Называется линейно независимой на интервале , если тождество
(1)
Выполняется только тогда когда все коэффициенты равны нулю одновременно.
Определение 2. Система функций называется линейно зависимой на интервале , если существуют числа из которых хотя бы одно не равно нулю, такие, что выполняется тождество (1).
Теорема. Критерий линейной зависимости и независимости системы функций.
Для того, чтобы система функций была линейно зависимой на некотором интервале, необходимо и достаточно, чтобы определитель Вронского
(2)
Был равен нулю тождественно во всех точках этого интервала.
Необходимость.
Пусть система функций линейно зависима на интервале , тогда существуют числа из которых хотя бы одно отлично от нуля, такие, что выполняется тождество (1). Дифференцируя его раз, получим систему однородных линейных уравнений
Которая имеет нетривиальное решение . Это возможно, если определитель системы равен нулю тождественно .
Достаточность.
Пусть на , тогда система (3) имеет нетривиальное решение . Это означает, что выполняется первое тождество системы (3), когда хотя бы одно из чисел отлично от нуля.
Следствие. Для того, чтобы система функций была линейно независимой на некотором интервале, необходимо и достаточно, чтобы определитель Вронского был отличен от нуля хотя бы в одной точке этого интервала.
Пример 1. Функции линейно независимы на любом интервале действительной оси.
В самом деле,
.
Пример 2. Функции линейно независимы на любом интервале действительной оси, если различные (т. е. при ) (действительные или комплексные) числа.
В самом деле,
Последний определитель является определителем Вандермонда, который отличен от нуля только при различных .
Пример 3. Функции линейно независимы на любом интервале действительной оси.
Поскольку и , то задача сводится к системе функций , которая рассматривалась в примере 1.
< Предыдущая | Следующая > |
---|