3.2. Основные свойства переменных величин и их пределов
Указанные ниже свойства практически очевидны, хотя их можно и строго доказать.
1) Если (переменная X неизменна и равна постоянной A), то естественно считать, что и . То есть предел постоянной равен ей самой:
(1.5)
2) Если , и A и B конечны, то . То есть
(1.6)
(предел суммы или разности переменных равен сумме или разности их пределов).
3) Если , и A и B конечны, то . То есть
(1.7)
(предел произведения переменных равен произведению их пределов).
4) Если , , A и B конечны и , то . То есть
(1.8)
(предел частного равен частному пределов).
5) Если , и – любые постоянные числа, то . То есть
(1.9)
Действительно, на основании предыдущих свойств имеем:
.
6) Если X – бесконечно малая переменная величина (), то – бесконечно большая переменная величина ().
7) Если X – бесконечно большая переменная величина (), то – бесконечно малая переменная величина ().
8) Если переменная X ограничена (это значит, что все ее значения Xn расположены в некотором конечном числовом промежутке ), а переменная Y бесконечно малая (), то переменная – тоже бесконечно малая ().
9) Если переменная X ограничена, а переменная Y бесконечно большая (), то переменная – бесконечно малая ().
10) Теорема Вейерштрасса.
А) Пусть значения Xn переменной X монотонно возрастают и при этом все они меньше некоторой постоянной величины C. Такая переменная X называется Монотонно возрастающей и ограниченной сверху (числом C). Она заведомо имеет конечный предел A, причем . Наглядную иллюстрацию этой ситуации дает рис. 3.2.
|
Упражнения
1. (N = 1, 2, 3,…). Развернуть эту последовательность значений переменной X и найти ее предел.
Ответ: ; .
2. . Найти .
Ответ: .
3. (N = 1, 2, 3,…). Найти .
Ответ: .
< Предыдущая | Следующая > |
---|