Вариант № 21
1. Исследовать числовой ряд на сходимость: .
Так как , то . Но гармонический ряд расходится, следовательно, расходится и ряд с общим членом по первому признаку сравнения. Ответ: Ряд расходится.
2. Исследовать числовой ряд на сходимость: .
Применим признак д, Аламбера:
. Следовательно, данный ряд сходится. Ответ: Ряд сходится.
3. Исследовать числовой ряд на сходимость: .
Имеем . Функция удовлетворяет условиям интегрального признака Коши. Действительно, монотонно убывает на и, следовательно, интеграл и исходный ряд сходятся или расходятся одновременно. Имеем . Интеграл расходится, следовательно, расходится и данный ряд. Ответ: Ряд расходится.
4. Исследовать ряд на абсолютную или условную сходимость: .
Заметим, что всегда . Тогда . Но ряд сходится, так как является бесконечно убывающей геометрической прогрессией. Следовательно, исходный ряд сходится абсолютно в соответствии с первым признаком сравнения. Ответ: Ряд сходится абсолютно.
5. Определить область сходимости функционального ряда: .
Применим признак д, Аламбера к ряду : . Ряд сходится, если этот предел будет меньше единицы: , т. е. . Или . Следовательно, интервал является интервалом сходимости данного ряда. Исследуем ряд на концах интервала. При получим знакочередующийся числовой ряд , который сходится по признаку Лейбница. При получим числовой ряд , который расходится по признаку сравнения в предельной форме с расходящимся гармоническим рядом . Ответ: Областью сходимости ряда является множество
6. Определить область сходимости функционального ряда: .
Ряд знакоположительный. Применим признак д, Аламбера: . Ряд сходится, если этот предел будет меньше единицы: , т. е. или . Следовательно, ряд сходится при и . Исследуем ряд на концах интервала. При и при получим один и тот же числовой ряд , который расходится по интегральному признаку Коши. Действительно, . Ответ: Областью сходимости ряда является множество
7. Определить область сходимости функционального ряда: .
Область определения ряда . Применим признак д, Аламбера к ряду :. Ряд сходится, если этот предел будет меньше единицы: , т. е. , т. е. , или , т. е. . Следовательно, ряд сходится при . Исследуем ряд на концах интервала. При получим числовой ряд . При получим числовой ряд . Оба ряда расходятся, так как не выполняется необходимый признак сходимости ряда. Ответ: Областью сходимости ряда является множество .
8. Разложить указанную функцию в ряд Тейлора по степеням . Указать область сходимости: .
Функция представляет сумму бесконечно убывающей геометрической прогрессии: , при условии , - знаменатель прогрессии. Преобразуем данную функцию: . Положим . Получим: . Этот ряд будет бесконечно убывающей прогрессией, если только , или . Очевидно, что на концах этого интервала ряд расходится. Следовательно, областью сходимости ряда будет область . Ответ: .
9. Указанную функцию разложить в ряд Маклорена, используя разложения в ряд функций указать область сходимости: .
Воспользуемся разложением функции в ряд Маклорена: . Этот ряд сходится при . Тогда (здесь учтено, что ). Областью сходимости ряда будет . Ответ: , .
10. Вычислить приближённо с точностью до 10-4: .
Воспользуемся формулой . Положим здесь . Получим . Тогда . В соответствии с теоремой Лейбница заданная точность будет достигнута, если первое отбрасываемое слагаемое будет по абсолютной величине меньше, чем . В данном случае . Очевидно, что . Следовательно, достаточно взять два первых слагаемых: . Ответ:
11. Вычислить предел, используя разложение функций в ряд Тейлора: .
Преобразуем предел
. Так как и , то
. Ответ: .
12. Найти сумму ряда:.
Обозначим сумму ряда через S(X). Тогда . Но есть сумма бесконечно убывающей геометрической прогрессии при . Следовательно, . Ответ: .
13. Найти сумму ряда:.
Обозначим сумму ряда через S(X). Тогда . Но есть суммы бесконечно убывающих геометрических прогрессий при . Следовательно, . Ответ: .
14. Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Будем искать решение уравнения в виде , где . Будем последовательно вычислять производные : , . Следовательно, . Таким образом, . Ответ: .
15. Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Ищем решение уравнения в виде . Тогда . Подставляя это в исходное уравнение, получим: . Первую сумму можно записать в следующем виде: , вторую сумму – в виде , третью сумму – в виде . Тогда . Объединим все суммы: . Это равнество должно выполняться для различных значений X. Это возможно лишь тогда, когда коэффициенты при всех степенях X будут равны нулю, т. е. . Отсюда получаем рекуррентную формулу: Следовательно, . Воспользуемся начальными условиями: . Получим: . Таким образом, .
Ответ: .
16. Разложить заданную графиком периодическую функцию в ряд Фурье:
По графику определяем .
Функция является чётной. Поэтому в её разложении в ряд Фурье все коэффициенты . Вычислим коэффициенты : . Таким образом, . Ответ: .
17. Разложить функцию в ряд Фурье на :
Функция является чётной. Поэтому в её разложении в ряд Фурье все коэффициенты . Вычислим коэффициенты : . Из таблиц находим (при ): . Таким образом, .
Ответ: .
33. Найти разложение функции ряд Фурье в комплексной форме на : .
В комплексной форме ряд Фурье функции периода имеет вид: где . В данном случае . Таким образом, . Ответ: .
34. Функцию представить интегралом Фурье в действительной форме:
.
Представление функции интегралом Фурье в действительной форме имеет вид , где . Функция является нечётной, поэтому и , найдём : . Таким образом, .
Ответ: .
35. Функцию представить интегралом Фурье в комплексной форме:
.
Представление функции интегралом Фурье в комплексной форме имеет вид , где . Вычислим : . Таким образом, . Ответ:
< Предыдущая | Следующая > |
---|