Вариант № 20
1. Исследовать числовой ряд на сходимость: .
Так как , то
. Но ряд с общим членом
сходится, так как является бесконечно убывающей геометрической прогрессией. Следовательно, сходится и исследуемый ряд в соответствии с первым признаком сравнения.
Ответ: Ряд сходится.
2. Исследовать числовой ряд на сходимость: .
Применим признак д, Аламбера:
.Следовательно, данный ряд сходится.
Ответ: Ряд сходится.
3. Исследовать числовой ряд на сходимость: .
Применим признак д, Аламбера:
. Следовательно, данный ряд сходится. Ответ: Ряд сходится.
4. Исследовать ряд на абсолютную или условную сходимость: .
Исходный ряд является знакочередующимся рядом и удовлетворяет всем условиям теоремы Лейбница. Действительно, по абсолютной величине члены ряда монотонно убывают, а общий член ряда по абсолютной величине стремится к нулю. Рассмотрим ряд . Очевидно, что
. Но ряд с общим членом
сходится, так как степень в знаменателе больше единицы. Следовательно, по первому признаку сравнения сходится и ряд с общим членом
. Ответ: Ряд сходится абсолютно.
5. Определить область сходимости функционального ряда: .
Применим признак д, Аламбера к ряду :
(Предел
находится по правилу Лопиталя). Ряд сходится, если вычисленный предел будет меньше единицы:
, т. е.
. Или
. Следовательно, интервал
является интервалом сходимости данного ряда. Исследуем ряд на концах интервала. При
получим знакочередующийся числовой ряд
, который сходится по признаку Лейбница. При
получим числовой ряд
, который расходится по интегральному признаку Коши:
. Ответ: Областью сходимости ряда является множество
6. Определить область сходимости функционального ряда: .
Применим признак д, Аламбера к ряду :
. Ряд сходится, если этот предел будет меньше единицы:
, т. е.
или
. Следовательно, ряд сходится при
и
. Исследуем ряд на концах интервала. При
получим числовой ряд
. Этот ряд сходится по признаку Лейбница. При
получим числовой ряд
. Этот ряд расходится по признаку сравнения с расходящимся рядом
(степень в знаменателе меньше единицы). Ответ: Областью сходимости ряда является множество
7. Определить область сходимости функционального ряда: .
Применим признак д, Аламбера к ряду :
. Ряд сходится, если этот предел будет меньше единицы:
, т. е.
. Следовательно, ряд сходится при
. Исследуем ряд на концах интервала. При
получим числовой ряд
. Этот ряд сходится абсолютно, так как в знаменателе степень N больше единицы, т. е. сходится и исходный ряд при
. Ответ: Областью сходимости ряда является множество
.
8. Разложить указанную функцию в ряд Тейлора по степеням . Указать область сходимости:
.
Воспользуемся известным разложением функции :
. Этот ряд сходится при
. Преобразуем исходную функцию:
. В записанном выше разложении логарифмической функции положим
, получим:
Или
. Ряд сходится при
или
.
Ответ: .
9. Указанную функцию разложить в ряд Маклорена, используя разложения в ряд функций указать область сходимости:
.
Воспользуемся разложением функции в ряд Маклорена:
. Этот ряд сходится при
. Получим:
.. Областью сходимости ряда будет
. Ответ:
,
.
10. Вычислить приближённо с точностью до 10-4: .
Воспользуемся формулой . Положим
Получим
. Тогда
. В соответствии с теоремой Лейбница заданная точность будет достигнута, если первое отбрасываемое слагаемое будет по абсолютной величине меньше, чем
. В данном случае
. Очевидно, что
. Следовательно, достаточно взять три первых слагаемых:
. Ответ:
.
11. Вычислить предел, используя разложение функций в ряд Тейлора: .
Так как , то
. Ответ:
.
12. Найти сумму ряда:.
Преобразуем ряд:
.
Но
. Это суммы бесконечно убывающих геометрических прогрессий при
. Следовательно,
. Ответ:
.
13. Найти сумму ряда:.
Обозначим сумму ряда через S(X). Тогда
. Но
есть суммы бесконечно убывающих геометрических прогрессий при
. Следовательно,
.
Ответ: .
14. Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Будем искать решение уравнения в виде , где
. Будем последовательно вычислять производные
:
,
. Следовательно,
. Таким образом,
.
Ответ: .
15. Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Ищем решение уравнения в виде , где
. Будем последовательно вычислять производные
:
,
. Следовательно,
. Таким образом,
.
Ответ: .
16. Разложить заданную графиком периодическую функцию в ряд Фурье:
По графику определяем
.
Функция является чётной. Поэтому в её разложении в ряд Фурье
все коэффициенты
. Вычислим коэффициенты
:
. Таким образом,
. Ответ:
.
17. Разложить функцию в ряд Фурье на :
Вычисляем коэффициенты разложения данной функции в ряд Фурье. Так как функция нечётная, то все
,
. Таким образом,
. Ответ:
.
30. Найти разложение функции ряд Фурье в комплексной форме на :
.
В комплексной форме ряд Фурье функции периода
имеет вид:
где
. В данном случае
. Таким образом,
. Ответ:
.
31. Функцию представить интегралом Фурье в действительной форме:
.
Представление функции интегралом Фурье в действительной форме имеет вид , где
. Функция является нечётной, поэтому и
, найдём
:
. Таким образом,
.
Ответ: .
32. Функцию представить интегралом Фурье в комплексной форме:
.
Представление функции интегралом Фурье в комплексной форме имеет вид , где
. Вычислим
:
. Таким образом,
. Ответ:
< Предыдущая | Следующая > |
---|