Вариант № 13
Исследовать числовой ряд на сходимость: .
Заметим, что . Ряд
Сходится, так как является бесконечно убывающей геометрической прогрессией. Следовательно, сходится и ряд с общим членом
по первому признаку сравнения. Ответ: Ряд сходится.
2. Исследовать числовой ряд на сходимость: .
Применим признак д, Аламбера:
.
Следовательно данный ряд сходится. Ответ: Ряд сходится.
3. Исследовать числовой ряд на сходимость: .
Имеем . Функция
удовлетворяет условиям интегрального признака Коши. Действительно,
монотонно убывает на
и, следовательно, интеграл
и исходный ряд сходятся или расходятся одновременно. Имеем
. Интеграл сходится, следовательно, сходится и данный ряд. Ответ: Ряд сходится.
4. Исследовать ряд на абсолютную или условную сходимость: .
Рассмотрим ряд . Заметим, что
, но гармонический ряд
расходится, следовательно, расходится и рассматриваемый ряд, т. е. абсолютной сходимости исходного ряда нет. Исходный ряд является знакочередующимся рядом и удовлетворяет всем условиям теоремы Лейбница. Действительно, по абсолютной величине члены ряда монотонно убывают, а общий член ряда по абсолютной величине стремится к нулю. Следовательно, исходный ряд сходится условно. Ответ: Ряд сходится условно.
5. Определить область сходимости функционального ряда: .
Для сходимости ряда необходимо, чтобы . Это возможно тогда, когда
. Но в таком случае
. Применим признак д, Аламбера к ряду
:
. Ряд сходится, если этот предел будет меньше единицы:
, т. е.
. Или
. Следовательно, интервал
является интервалом сходимости данного ряда. Исследуем ряд на концах интервала. При
получим знакочередующийся числовой ряд
, а при
получим числовой ряд
. Оба ряда расходятся, так как не выполняется необходимый признак сходимости. Ответ: Областью сходимости ряда является множество
Определить область сходимости функционального ряда: .
Применим признак д, Аламбера к ряду :
. Ряд сходится, если этот предел будет меньше единицы:
, т. е.
или
. Следовательно, ряд сходится при
и
. Исследуем ряд на концах интервала. При
получим числовой ряд
, при
получим числовой ряд
. Оба ряда расходятся, так как не выполняется необходимый признак сходимости. Ответ: Областью сходимости ряда является множество
Определить область сходимости функционального ряда: .
Поскольку всегда , то достаточно рассмотреть ряд
с положительными членами. Применим признак д, Аламбера к ряду
:
. Ряд сходится, если этот предел будет меньше единицы:
, т. е.
. Следовательно, ряд сходится при
. Исследуем ряд на концах интервала. При
получим числовой ряд
, при
получим числовой ряд
. Оба ряда расходятся по признаку сравнения с расходящимся рядом
(известно, что
). Ответ: Областью сходимости ряда является множество
8. Разложить указанную функцию в ряд Тейлора по степеням . Указать область сходимости:
.
Известно, что . Функция
представляет сумму бесконечно убывающей геометрической прогрессии:
, при условии
,
- знаменатель прогрессии. Положим
. Получим ряд:
. Тогда
. Этот ряд будет бесконечно убывающей прогрессией, если только
, или
. Очевидно, что на концах этого интервала ряд расходится. Следовательно, областью сходимости ряда будет область
. Ответ:
.
Указанную функцию разложить в ряд Маклорена, используя разложения в ряд функций указать область сходимости:
.
Преобразуем функцию: . Воспользуемся разложением функции
в ряд Маклорена:
. Этот ряд сходится при
. Подставим в этот ряд
. Тогда
. Областью сходимости ряда будет
. Ответ:
,
.
10. Вычислить приближённо с точностью до 10-4: .
Воспользуемся формулой . Положим здесь
. Получим
.
Тогда
. В соответствии с теоремой Лейбница заданная точность будет достигнута, если первое отбрасываемое слагаемое будет по абсолютной величине меньше, чем
. В данном случае
. Очевидно, что
. Следовательно, достаточно взять два первых слагаемых:
. Ответ:
11. Вычислить предел, используя разложение функций в ряд Тейлора: .
Преобразуем предел
. Так как
, то
. Ответ:
.
Найти сумму ряда:.
Обозначим сумму ряда через S(X): . Ряд сходится при
. Проинтегрируем ряд дважды:
. Но
есть сумма бесконечно убывающей геометрической прогрессии при
. Следовательно,
. Ответ:
.
Найти сумму ряда:.
Обозначим сумму ряда через S(X). Тогда
. Но
есть суммы бесконечно убывающих геометрических прогрессий при
. Следовательно,
. Ответ:
.
Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Будем искать решение уравнения в виде , где
. Будем последовательно вычислять производные
:
. Следовательно,
. Таким образом,
. Ответ:
.
Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Будем искать решение уравнения в виде , где
. Будем последовательно вычислять производные
:
. Следовательно,
. Или:
.
Ответ: .
Разложить заданную графиком периодическую функцию в ряд Фурье:
По графику определяем .
Функция является нечётной. Поэтому в разложении функции в ряд Фурье все коэффициенты
. Вычислим коэффициенты
:
. Таким образом,
. Ответ:
.
Разложить функцию в ряд Фурье на :
Вычисляем коэффициенты разложения данной функции в ряд Фурье. Так как функция чётная, то все
,
. Из таблиц находим (при
):
. Таким образом,
. Ответ:
.
18. Найти разложение функции ряд Фурье в комплексной форме на :
.
В комплексной форме ряд Фурье функции периода
имеет вид:
где
. В данном случае
. Таким образом,
. Ответ:
.
19. Функцию представить интегралом Фурье в действительной форме:
.
Представление функции интегралом Фурье имеет вид , где
. Вычисляем функции
и
:
.
. Тогда
.
Ответ: .
20. Функцию представить интегралом Фурье в комплексной форме:
.
Представление функции интегралом Фурье в комплексной форме имеет вид , где
. Вычислим
:
. Таким образом,
.
Ответ: .
< Предыдущая | Следующая > |
---|