Вариант № 13
Исследовать числовой ряд на сходимость: .
Заметим, что . Ряд Сходится, так как является бесконечно убывающей геометрической прогрессией. Следовательно, сходится и ряд с общим членом по первому признаку сравнения. Ответ: Ряд сходится.
2. Исследовать числовой ряд на сходимость: .
Применим признак д, Аламбера:
.
Следовательно данный ряд сходится. Ответ: Ряд сходится.
3. Исследовать числовой ряд на сходимость: .
Имеем . Функция удовлетворяет условиям интегрального признака Коши. Действительно, монотонно убывает на и, следовательно, интеграл и исходный ряд сходятся или расходятся одновременно. Имеем . Интеграл сходится, следовательно, сходится и данный ряд. Ответ: Ряд сходится.
4. Исследовать ряд на абсолютную или условную сходимость: .
Рассмотрим ряд . Заметим, что , но гармонический ряд расходится, следовательно, расходится и рассматриваемый ряд, т. е. абсолютной сходимости исходного ряда нет. Исходный ряд является знакочередующимся рядом и удовлетворяет всем условиям теоремы Лейбница. Действительно, по абсолютной величине члены ряда монотонно убывают, а общий член ряда по абсолютной величине стремится к нулю. Следовательно, исходный ряд сходится условно. Ответ: Ряд сходится условно.
5. Определить область сходимости функционального ряда: .
Для сходимости ряда необходимо, чтобы . Это возможно тогда, когда . Но в таком случае . Применим признак д, Аламбера к ряду : . Ряд сходится, если этот предел будет меньше единицы: , т. е. . Или . Следовательно, интервал является интервалом сходимости данного ряда. Исследуем ряд на концах интервала. При получим знакочередующийся числовой ряд , а при получим числовой ряд . Оба ряда расходятся, так как не выполняется необходимый признак сходимости. Ответ: Областью сходимости ряда является множество
Определить область сходимости функционального ряда: .
Применим признак д, Аламбера к ряду : . Ряд сходится, если этот предел будет меньше единицы: , т. е. или . Следовательно, ряд сходится при и . Исследуем ряд на концах интервала. При получим числовой ряд , при получим числовой ряд . Оба ряда расходятся, так как не выполняется необходимый признак сходимости. Ответ: Областью сходимости ряда является множество
Определить область сходимости функционального ряда: .
Поскольку всегда , то достаточно рассмотреть ряд с положительными членами. Применим признак д, Аламбера к ряду : . Ряд сходится, если этот предел будет меньше единицы: , т. е. . Следовательно, ряд сходится при . Исследуем ряд на концах интервала. При получим числовой ряд , при получим числовой ряд . Оба ряда расходятся по признаку сравнения с расходящимся рядом (известно, что ). Ответ: Областью сходимости ряда является множество
8. Разложить указанную функцию в ряд Тейлора по степеням . Указать область сходимости: .
Известно, что . Функция представляет сумму бесконечно убывающей геометрической прогрессии: , при условии , - знаменатель прогрессии. Положим . Получим ряд: . Тогда . Этот ряд будет бесконечно убывающей прогрессией, если только , или . Очевидно, что на концах этого интервала ряд расходится. Следовательно, областью сходимости ряда будет область . Ответ: .
Указанную функцию разложить в ряд Маклорена, используя разложения в ряд функций указать область сходимости: .
Преобразуем функцию: . Воспользуемся разложением функции в ряд Маклорена: . Этот ряд сходится при . Подставим в этот ряд . Тогда . Областью сходимости ряда будет . Ответ: , .
10. Вычислить приближённо с точностью до 10-4: .
Воспользуемся формулой . Положим здесь . Получим .
Тогда
. В соответствии с теоремой Лейбница заданная точность будет достигнута, если первое отбрасываемое слагаемое будет по абсолютной величине меньше, чем . В данном случае . Очевидно, что . Следовательно, достаточно взять два первых слагаемых: . Ответ:
11. Вычислить предел, используя разложение функций в ряд Тейлора: .
Преобразуем предел
. Так как , то
. Ответ:.
Найти сумму ряда:.
Обозначим сумму ряда через S(X): . Ряд сходится при . Проинтегрируем ряд дважды: . Но есть сумма бесконечно убывающей геометрической прогрессии при . Следовательно, . Ответ: .
Найти сумму ряда:.
Обозначим сумму ряда через S(X). Тогда
. Но есть суммы бесконечно убывающих геометрических прогрессий при . Следовательно, . Ответ: .
Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Будем искать решение уравнения в виде , где . Будем последовательно вычислять производные :
. Следовательно, . Таким образом, . Ответ: .
Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Будем искать решение уравнения в виде , где . Будем последовательно вычислять производные : . Следовательно, . Или: .
Ответ: .
Разложить заданную графиком периодическую функцию в ряд Фурье:
По графику определяем .
Функция является нечётной. Поэтому в разложении функции в ряд Фурье все коэффициенты . Вычислим коэффициенты : . Таким образом, . Ответ: .
Разложить функцию в ряд Фурье на :
Вычисляем коэффициенты разложения данной функции в ряд Фурье. Так как функция чётная, то все , . Из таблиц находим (при ): . Таким образом,
. Ответ: .
18. Найти разложение функции ряд Фурье в комплексной форме на : .
В комплексной форме ряд Фурье функции периода имеет вид: где . В данном случае . Таким образом, . Ответ: .
19. Функцию представить интегралом Фурье в действительной форме:
.
Представление функции интегралом Фурье имеет вид , где . Вычисляем функции и : . . Тогда
.
Ответ: .
20. Функцию представить интегралом Фурье в комплексной форме:
.
Представление функции интегралом Фурье в комплексной форме имеет вид , где . Вычислим : . Таким образом, .
Ответ: .
< Предыдущая | Следующая > |
---|