Вариант № 12
Исследовать числовой ряд на сходимость: .
Заметим, что . Следовательно, . Известно, что ряд с общим членом сходится при и расходится при . Ряд сообщим членом сходится так как . Тогда сходится и ряд с общим членом по первому признаку сравнения. Ответ: Ряд сходится.
Исследовать числовой ряд на сходимость: .
Применим признак д, Аламбера:
.
Следовательно, данный ряд сходится. Ответ: Ряд сходится.
3. Исследовать числовой ряд на сходимость: .
Заметим, что . Ряд Сходится, так как является бесконечно убывающей геометрической прогрессией. Следовательно, сходится и ряд с общим членом по первому признаку сравнения. Ответ: Ряд сходится.
4. Исследовать ряд на абсолютную или условную сходимость: .
Рассмотрим ряд . Применим признак д, Аламбера:
. Этот ряд сходится, следовательно, исследуемый ряд сходится абсолютно. Ответ: Ряд сходится абсолютно.
5. Определить область сходимости функционального ряда: . Применим признак д, Аламбера к ряду :
(степени многочленов одинаковые). Ряд сходится, если этот предел будет меньше единицы: , т. е. . Или . Следовательно, интервал является интервалом сходимости данного ряда. Исследуем ряд на концах интервала. При получим знакочередующийся числовой ряд . Он сходится по признаку Лейбница. При получим числовой ряд , который сходится по признаку сравнения со сходящимся рядом . Ответ: Областью сходимости ряда является множество
Определить область сходимости функционального ряда: .
Применим признак д, Аламбера к ряду : . Ряд сходится, если этот предел будет меньше единицы: , т. е. или . Следовательно, ряд сходится при и . Исследуем ряд на концах интервала. При получим знакочередующийся числовой ряд , сходящийся по признаку Лейбница. При получим числовой ряд . Так как (тангенс убывает, а наибольшее значение имеет при ), то данный ряд сходится по признаку сравнения со сходящимся рядом . Ответ: Областью сходимости ряда является множество
Определить область сходимости функционального ряда: .
Поскольку всегда , то достаточно рассмотреть ряд с положительными членами. Применим признак д, Аламбера: . Ряд сходится, если этот предел будет меньше единицы: , т. е. . Следовательно, ряд сходится при . Исследуем ряд на концах интервала. При получим числовой ряд , который расходится по признаку сравнения с расходящимся рядом (известно, что ). При получим числовой ряд , который расходится по тому же признаку. Ответ: Областью сходимости ряда является множество
8. Разложить указанную функцию в ряд Тейлора по степеням . Указать область сходимости: .
Воспользуемся известнымразложением корня кубического:
. Этот ряд сходится при условии . Преобразуем исходную функцию: . В записанном выше разложении квадратного корня положим , получим: Или . Ряд сходится, если или .
Ответ: .
Указанную функцию разложить в ряд Маклорена, используя разложения в ряд функций указать область сходимости: .
Воспользуемся разложением функции в ряд Маклорена: . Этот ряд сходится при . В этот ряд подставим , получим: . Тогда . При ряд сходится в соответствии с признаком Лейбница. Областью сходимости ряда будет . Ответ: , .
Вычислить приближённо с точностью до 10-4: .
Воспользуемся формулой . Положим здесь . Получим . Тогда . В соответствии с теоремой Лейбница заданная точность будет достигнута, если первое отбрасываемое слагаемое будет по абсолютной величине меньше, чем . В данном случае . Очевидно, что . Следовательно, достаточно взять четыре первых слагаемых: . Ответ:
Вычислить предел, используя разложение функций в ряд Тейлора: .
Так как , то . Кроме того, . Следовательно,
. Ответ: .
Найти сумму ряда:.
Обозначим сумму ряда через S(X). Тогда . Но есть сумма бесконечно убывающей геометрической прогрессии при . Следовательно, .
Ответ: .
Найти сумму ряда:.
Обозначим сумму ряда через S(X). Тогда . Но есть суммы бесконечно убывающих геометрических прогрессий при . Следовательно, .
Ответ: .
Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Будем искать решение уравнения в виде , где . Будем последовательно вычислять производные : . Следовательно, Тогда . Ответ: .
Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Ищем решение уравнения в виде . Тогда . Подставляя это в исходное уравнение, получим: . Первую сумму можно записать в следующем виде: , вторую сумму – в виде , третью сумму – в виде . Тогда . Объединим все суммы: . Это равнество должно выполняться для различных значений X. Это возможно лишь тогда, когда коэффициенты при всех степенях X будут равны нулю, т. е. . Отсюда получаем рекуррентную формулу: Следовательно, . Воспользуемся начальными условиями: . Получим: . Таким образом, .
Ответ: .
Разложить заданную графиком периодическую функцию в ряд Фурье:
По графику определяем .
Функция является чётной. Поэтому в её разложении в ряд Фурье все коэффициенты . Вычислим коэффициенты : . Таким образом, . Ответ: .
Разложить функцию в ряд Фурье на :
Вычисляем коэффициенты разложения данной функции в ряд Фурье. Так как функция нечётная, то все . Вычислим . . . Таким образом, . Ответ: .
Найти разложение функции в ряд Фурье в комплексной форме на : .
В комплексной форме ряд Фурье функции периода имеет вид: где . Вычислим : . Таким образом, .
Ответ: .
Функцию представить интегралом Фурье в действительной форме:
.
Представление функции интегралом Фурье в действительной форме имеет вид , где . Заданная функция является чётной и, следовательно, . Таким образом, .
Ответ:
Функцию представить интегралом Фурье в комплексной форме:
.
Представление функции интегралом Фурье в комплексной форме имеет вид , где . Вычислим : . Таким образом, .
Ответ:
< Предыдущая | Следующая > |
---|