Вариант № 04
1. Исследовать числовой ряд на сходимость: .
Заметим, что . Последнее неравенство справедливо в связи с тем, что
для всех
. Таким образом, общий член данного ряда не превосходит общего члена гармонического ряда, который расходится. Следовательно, по первому достаточному признаку сравнения данный ряд также расходится. Ответ: Ряд расходится.
2. Исследовать числовой ряд на сходимость: .
Применим признак д, Аламбера:
. Следовательно, данный ряд сходится. Ответ: Ряд сходится.
3. Исследовать числовой ряд на сходимость: .
Имеем . Функция
удовлетворяет условиям интегрального признака Коши. Действительно,
монотонно убывает на
и, следовательно, интеграл
и исходный ряд сходятся или расходятся одновременно. Имеем
. Интеграл сходится, следовательно, сходится и данный ряд. Ответ: Ряд сходится.
4. Исследовать ряд на абсолютную или условную сходимость: .
Рассмотрим ряд . Для общего члена этого ряда выполняются неравенства
. Известно, что ряд с общим членом
сходится при
и расходится при
. Ряд с общим членом
сходится. По первому признаку сравнения сходится и ряд с общим членом
. Следовательно, исходный ряд сходится абсолютно. Ответ: Ряд сходится абсолютно.
5. Определить область сходимости функционального ряда: . Применим признак д, Аламбера к ряду
:
. Ряд сходится, если этот предел будет меньше единицы:
, т. е.
. Или
. Следовательно, интервал
является интервалом сходимости данного ряда. Исследуем ряд на концах интервала. При
получим знакочередующийся числовой ряд
. Он сходится по теореме Лейбница, так как общий член ряда стремится к нулю, а по абсолютной величине члены ряда монотонно убывают. При
получим знакоположительный числовой ряд
, который сходится по признаку сравнения со сходящимся рядом с общим членом
. Ответ: Областью сходимости ряда является множество
6. Определить область сходимости функционального ряда: .
Применим признак д, Аламбера к этому ряду: . Ряд сходится, если этот предел будет меньше единицы:
, т. е.
или
и
. Следовательно, ряд сходится при
и
. Исследуем ряд на концах интервала. При
получим числовой ряд
, который сходится по признаку сравнения со сходящимся рядом с общим членом
. Ответ: Областью сходимости ряда является множество
7. Определить область сходимости функционального ряда: .
Применим признак д, Аламбера к этому ряду :
. Ряд сходится, если этот предел будет меньше единицы:
, т. е.
. Это условие выполняется, если
. При
получим числовой ряд
. Этот ряд расходится, так как общий член ряда превосходит по величине общий член гармонического ряда, который расходится. Ответ: Областью сходимости ряда является множество
8. Разложить указанную функцию в ряд Тейлора по степеням . Указать область сходимости:
.
Воспользуемся известным разложением функции :
. Этот ряд сходится на всей числовой оси:
. Преобразуем исходную функцию:
. В записанном выше разложении экспоненциальной функции положим
, получим:
Или
. Ряд сходится при
.
Ответ: .
9. Указанную функцию разложить в ряд Маклорена, используя разложения в ряд функций указать область сходимости:
.
Преобразуем данную функцию: . Воспользуемся разложением функции
в ряд Маклорена:
. Этот ряд сходится при
. В этот ряд подставим сначала
, затем
, получим:
,
. Первый ряд сходится при
, второй – при
Тогда
. Областью сходимости ряда будет
. Ответ:
,
.
10. Вычислить приближённо с точностью до 10-4: .
Воспользуемся формулой В данном случае вычисляется
, т. е.
. В соответствии с теоремой Лейбница заданная точность будет достигнута, если первое отбрасываемое слагаемое будет по абсолютной величине меньше, чем
. В данном случае
. Слдовательно, достаточно взять два слагаемых:
. Ответ:
11. Вычислить предел, используя разложение функций в ряд Тейлора: .
Так как , а
, то
. Ответ:
.
12. Найти сумму ряда:.
Обозначим сумму ряда через S(X). Тогда
. Но
есть сумма бесконечно убывающей геометрической прогрессии при
. Следовательно,
.
Ответ: .
13. Найти сумму ряда:.
Обозначим сумму ряда через S(X). Тогда
. Но
есть суммы бесконечно убывающих геометрических прогрессий при
. Следовательно,
. Ответ:
.
14. Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Будем искать решение уравнения в виде , где
. Будем последовательно вычислять производные
:
,
. Следовательно,
. Таким образом,
. Ответ:
.
15. Получить решение дифференциального уравнения 1-го и 2-го порядков в виде степенного ряда или ряда Тейлора:
Ищем решение уравнения в виде , где
. Будем последовательно вычислять производные
:
,
. Следовательно,
. Таким образом,
. Ответ:
.
16. Разложить заданную графиком периодическую функцию в ряд Фурье:
По графику определяем
.
Функция является чётной. Поэтому в её разложении в ряд Фурье
все коэффициенты
. Вычислим коэффициенты
:
. Следовательно,
, если
чётное и
, если
нечётное. Положим
. Тогда для нечётных
получим
Таким образом,
. Ответ:
.
17. Разложить функцию в ряд Фурье на :
Вычисляем коэффициенты разложения данной функции в ряд Фурье:
. Из таблиц находим (при
):
. Аналогично,
. Таким образом,
.
Ответ: .
18. Найти разложение функции ряд Фурье в комплексной форме на :
.
В комплексной форме ряд Фурье функции периода
имеет вид:
где
. В данном случае
. Таким образом,
.
Ответ: .
19. Функцию представить интегралом Фурье в действительной форме:
.
Представление функции интегралом Фурье в действительной форме имеет вид , где
. Заданная функция является нечётной и, следовательно,
. Таким образом,
.
Ответ:
20. Функцию представить интегралом Фурье в комплексной форме:
.
Представление функции интегралом Фурье в комплексной форме имеет вид , где
. Вычислим
:
. Таким образом,
.
Ответ:
< Предыдущая | Следующая > |
---|