Вариант контрольной 18
Вариант 18
Задача 1. Вычислить определенный интеграл методом замены переменной с точностью до двух знаков после запятой.
Задача 2. Вычислить определенный интеграл методом интегрирования по частям с точностью до двух знаков после запятой.
Задача 3. Вычислить определенный интеграл с точностью до двух знаков после запятой, выделяя в знаменателе полный квадрат.
Задача 4. Вычислить площадь фигуры, ограниченной графиками функций:
Находим точки пересечения графиков функций:
Задача 5. Вычислить площадь фигуры:
Задача 6. Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями в полярных координатах.
Решение:
Задача 7. Вычислить длину дуги кривой:
Решение.
Задача 8. Вычислить длину дуги кривой:
;
Решение.
Задача 9. Вычислить длину дуги кривой:
;
Решение.
Задача 10. Вычислить объём тела, ограниченного поверхностями , ,
Решение.
Имеем тело (гиперболоид) с сечениями параллельно XOY, зависящими только от Z:.
Значит, объем тела:
Сечение, перпендикулярное оси OZ – эллипс:
Площадь эллипса:
Задача 11. Вычислить объем тела, образованного вращением фигуры, ограниченной графиками функций. Ось вращения OY.
Решение: Объем тела, образованного вращением фигуры, ограниченной графиками функций, есть разность объемов тел, образованного вращением фигуры, ограниченной графиками функций и
Найдем координаты границ тел по оси OX:
Значит, объем тела
Задача 12. Найти координаты центра масс плоской однородной фигуры Ф, ограниченной первой аркой циклоиды: и осью Ох.
Решение:
Находим границы фигуры Ф:
Задача 13. Найти момент инерции эллипса относительно оси Oy.
Решение: Воспользуемся симметричностью эллипса относительно осей координат. Рассмотрим четверть эллипса .
Слишком сложное решение для первого курса. Возможно опечатка.
Задача 14. Вычислить несобственные интегралы или доказать их расходимость:
А)
Подынтегральная функция определена и непрерывна при . Значит, несобственный интеграл:
Несобственный интеграл расходится.
Б)
Подынтегральная функция определена и непрерывна при и При . Значит, несобственный интеграл:
Задача 15. Исследовать сходимость интеграла от неотрицательной функции:
Подынтегральная функция определена и непрерывна при .
Оценим подынтегральную функцию при :
Следовательно:
Поскольку интеграл сходится, то по признаку сравнения сходится исходный несобственный интеграл.
< Предыдущая | Следующая > |
---|