Вариант № 06
Вар.6
Задача 1: Найти область определения функции
. Нарисовать область на координатной плоскости.
Область определения функции
, т. е. границей области будет окружность
. Область определения данной функции состоит из внешних точек окружности, включая точки, лежащие на окружности.
Задача 2: Найти частные производные и полный дифференциал ![]()

Задача 3: Вычислить значения частных производных
функции
в точке ![]()
![]()

Задача 4: Вычислить значение производной сложной функции
, где
при ![]()
![]()

При
![]()
![]()
Задача 5: Вычислить значения частных производных функции
, заданной неявно, в заданной точке ![]()
или ![]()
; ![]()

В точке
: 
Задача 6: Найти градиент функции
и производную по направлению
в точке![]()
; ![]()

Задача 7: Найти уравнения касательной плоскости и нормали к заданной поверхности
в точке ![]()
Поверхность задана неявно ![]()
; ![]()
![]()
; ![]()
Уравнение касательной плоскости: ![]()
![]()
Уравнение нормали: 
Задача 8: Найти вторые частные производные функции
. Убедиться в том, что ![]()
; ![]()
![]()
![]()
![]()
![]()
Значит ![]()
Задача 9: Проверить, удовлетворяет ли функция
Уравнению:![]()
;
;
![]()
![]()
Подставляем полученные значения производных в исходное уравнение:
![]()
Следовательно, функция
не удовлетворяет данному уравнению.
Задача 10: Исследовать функцию на экстремум ![]()
; ![]()
система имеет два решения:
а) X=0, Y=0
Т.
- стационарная точка
; ![]()
; ![]()
; ![]()
В т.
Нет экстремума
б)
т.
- стационарная точка
;
; ![]()
и
![]()
т.
- т. минимума ![]()
Задача 11: Найти наибольшее и наименьшее значения функции
в области
, ограниченной заданными линиями ![]()
1)
Т.
- стационарная точка
;
; ![]()
и
В т.
-минимум
, но т.
-
2) Исследуем значения функции на границах области
:
а) сторона ОА:
т.
- стационарная точка на
стороне ОА ![]()
б) сторона ОВ:
т.
- стационарная точка
на стороне ОВ ![]()
в) сторона АВ:
на АВ стационарная
точка![]()
В т.
:
,
Сравнивая все полученные значения, в которых могут достигаться наибольшее и наименьшее значения, видим, что:
;
;
Задача 12: Найти условный экстремум функции
при ![]()
![]()
не обращается в нуль ни в одной точке окружности ![]()
Составим функцию Лагранжа: ![]()
![]()
; ![]()

Система имеет 2 решения:
1)
, т. е. т.![]()
2)
, т. е. т.![]()
Выясним наличие условного экстремума двумя способами:
1) ![]()
При
Функция имеет условный максимум в т.
И
;
При
Ф-ция имеет условный минимум в т.
и
;
2) Рассмотрим т.
при
. Имеем ![]()
; ![]()
; ![]()
При
.
Значит:
т.
- точка условного максимума
Рассмотрим т.
при
. Имеем ![]()
; ![]()
; ![]()
При
.
Значит:
Т.
- точка условного минимума
| < Предыдущая | Следующая > |
|---|