Вариант № 20
Задача 1 Разложить вектор По векторам и .
Пусть , т. е.
След. вектор .
Задача 2 Найти длину вектора , если
Вычислим
.
Задача 3 Найти проекцию вектора на ось, Составляющую с координатными осями углы,
Если
Рассм. вектор ;
Рассм. единичный направляющий вектор данной оси ; ;
Величину Вычислим из условия: ;
; ;
Задача 4 Найти координаты вектора , если он коллинеарен вектору и
, след. вектор Можно представить в виде ;
По условию задачи ;
Вычислим .
Задача 5 Найти момент силы, приложенной в точке относительно точки, а также модуль и направляющие косинусы вектора силы
1) , где ; ;
;
2) ;
Направл. косинусы вектора : ; ; .
Задача 6 Определить из условия, что площадь параллелограмма, построенного на векторах равна
; рассм. ;
Задача 7 Можно ли векторы Взять за базисные в трёхмерном пространстве?
Рассм. смешанное произведение
; след., векторы не компланарны, т. е. они линейно независимы и их можно взять за базисные векторы в трёхмерном пространстве.
Задача 8 В треугольнике известны координаты вершин: .
Составить уравнение высоты и определить острый угол между этой высотой и стороной
1)составим ур-е высоты : рассм. в-р ;
Рассм. т.И рассм. в-р ; тогда по условию задачи и и, след., ур-е прямой , проходящей через Перпендикулярно в-ру , можно записать в виде: т. е. ; ;
2) определим острый угол между прямыми по ф-ле: , где ,
А ; .
Задача 9 Известны координаты вершин четырёхугольника Доказать, что - трапеция и найти её площадь.
1) Рассм. в-ры ;
2) Рассм. в-ры ;
Площадь трапеции ;
Вычислим
Задача 10 Составить уравнение плоскости, проходящей через ось и точку
Пусть - искомая плоскость; рассм. направл. вектор оси ;
Рассм. вектор ;
Рассм. норм. вектор ;
Рассм. произв. т. и рассм. вектор ;
, т. е. ; .
Задача 11 Составить уравнение медианы треугольника , проведённой из вершины , если и .
1)Определим координаты точки (середины стороны ):
2)составим уравнение медианы Треугольника как уравнение прямой, проходящей через точки :
.
Задача 12 Составить уравнение высоты, опущенной из вершины треугольной пирамиды на основание , если
Рассм. векторы ; рассм. векторное произв-е ; рассм. ;
Вектор перпендикулярен плоскости основания , след. его можно взять в качестве направл. вектора искомой высоты пирамиды ; составим теперь уравнение высоты Как уравнение прямой, проходящей через точку параллельно вектору : .
Задача 13 Вычислить определитель третьего порядка, пользуясь определением; результат проверить разложением
Определителя по первой строке.
1) Непосредственное вычисление:
2) Разложение по 1-й строке:
.
Задача 14 Решить систему линейных уравнений по правилу Крамера и с помощью обратной матрицы:
Запишем данную систему уравнений в матричной форме: , (1) , где ; ; ;
Рассм. опред-ль матрицы : , след., матр. - невырожденная и можно применять формулы Крамера и вычислять обратную матр. ;
1) решим с – му ур – й (1) по правилу Крамера, т. е. с помощью формул: , , , где ,
, , ;
реш–е с–мы ур–й (1) в коорд. форме: вектор–решение с-мы (1): ;
2) получим реш–е с–мы ур–й (1) с помощью обратной матр. : , след., матр.- невырожденная и
Существует обратная матр. ; умножим рав-во (1) слева на матрицу : , ;
Вычислим обратную матр. : находим алгебр. дополнения Для всех эл-тов матрицы и составим из них м-цу :
Транспонируем м-цу и получим «присоединённую» м-цу
Разделим все эл-ты присоедин. м-цы на опр-ль и получим обратную матр. :
Находим теперь вектор-решение
Задача 15 Установить, являются ли векторы линейно зависимыми.
Вычислим ранг системы векторов методом Гаусса, т. е. выпишем матрицу их координат и приведём её к ступенчатому виду:
Ранг матрицы , след. данная система векторов линейно независима.
Задача 16 Исследовать систему линейных уравнений на совместность и в случае совместности найти её решение методом Гаусса.
Выпишем расширенную матрицу данной системы ур-й и приведём её к ступенчатому виду:
имеем ;
Так как , то по теореме Кронекера - Капелли данная система уравнений совместна, а так как , то система имеет единственное решение; приведём расширенную матрицу данной системы к диагональному виду и выпишем общее решение системы в координатной форме:
Общее решение системы имеет вид:
Задача 17 Найти матрицу преобразования, выражающего Через , если
Запишем данные преобразования в матричной форме: , где матрицы и
Вектор - столбцы имеют вид:
Рассм. ;
Вычислим матрицу
Задача 18 Найти собственные числа и собственные векторы линейного преобразования, заданного матрицей
1) Находим собств. значения линейного преобразования , т. е. корни характеристического уравнения :
Рассм.
- собств. значения (действ.) лин. преобр-я ;
2) находим собств. векторы линейного преобразования , соотв. собств. значениям :
А) рассм. Рассм.
Пусть , тогда вектор ; пусть , тогда вектор ;
Б) рассм.
Рассм. Пусть , тогда вектор ;
След. собств. векторы линейного преобразования суть:
; ; .
< Предыдущая | Следующая > |
---|