Вариант № 10
Задача 1 Разложить вектор По векторам и .
Пусть , т. е. ;
След., вектор .
Задача 2 Дано: Найти
Вычислим
.
Задача 3 Вычислить проекцию вектора на ось вектора , Если
Вект. ; рассм. ;
Вычислим ; ; .
Задача 4 Вычислить косинус угла, образованного векторами и .
Косинус угла между векторами Определим из равенства: ;
Вычислим ; ; .
Задача 5 Найти момент силы, приложенной в точке относительно точки, а также модуль и направляющие косинусы вектора силы
1) , где ; ;
;
2) ;
Направл. косинусы вектора : ; ; .
Задача 6 Вычислить , если
Рассм.
; по условию задачи угол - острый, след. ;
Вычислим искомое скал. произв-е .
Задача 7 Лежат ли точки в одной плоскости?
Рассмотрим векторы и рассмотрим смешанное
Произведение , след. векторы Компланарны
И, след., точки лежат в одной плоскости.
Задача 8 Найти точку , симметричную точке Относительно прямой .
Рассмотрим один из нормальных векторов прямой ; его можно взять в качестве направляющего вектора прямой и записать уравнение прямой в виде:
или определим координаты точки пересечения прямых
И: ;
Определим теперь координаты искомой точки из условия, что т. есть середина отрезка :
.
Задача 9 Найти координаты вершин и уравнения диагоналей квадрата , если известны уравнение одной стороны и координаты точки пересечения диагоналей .
1) составим ур-я диагоналей квадрата как ур-я прямых на пл-ти , проходящих через т. и
Составляющих угол со стороной ( ),
Т. е. прямых, для которых вып-ся след. соотношения:
А) рассм. случай
Б) рассм. случай
2) определим координаты вершин квадрата:
Т.- точка пересечения прямых : ;
Т.- точка пересечения прямых : ;
Координаты точки определим из условия, что т.Есть середина отрезка :
;
Координаты точки определим из условия, что т.Есть середина отрезка :
.
Задача 10 Составить уравнение плоскости, проходящей через точку параллельно векторам
Пусть - искомая плоскость;
Рассм. норм. вектор ;
Рассм. произв. т и рассм. вектор ; ;
, т. е. ; .
Задача 11 Составить канонические и параметрические уравнения прямой , заданной как пересечение двух плоскостей: .
Рассм. норм. векторы ; рассм. направл. вектор прямой : ; рассм. ;
Определим какую-либо точку ; рассм.
Положим , тогда ;
Запишем канонические ур-я прямой Как ур-я прямой, проходящей через т. параллельно вектору : ; параметрические ур-я прямой :
Задача 12 Найти основание перпендикуляра, опущенного из точки на плоскость .
Пусть т. - искомое основание перпендикуляра и - искомый перпендикуляр к плоскости ;
В качестве направл. вектора прямой возьмём нормальный вектор плоскости : и запишем канонические ур-я прямой Как ур-я прямой, проходящей через т. А параллельно вектору : ; параметрические ур-я прямой :
Определим координаты т. как точки пересечения прямой с плоскостью :
;
Задача 13 Вычислить определитель третьего порядка, пользуясь определением; результат проверить разложением
Определителя по первой строке.
1) Непосредственное вычисление:
2) Разложение по 1-й строке:
.
Задача 14 Решить систему линейных уравнений по правилу Крамера и с помощью обратной матрицы.
Запишем данную систему уравнений в матричной форме: , (1) , где
Рассм. опред-ль матрицы : ,
след., матр. - невырожденная и можно примен. формулы Крамера и вычислять обратную матр. ;
1) решим с – му ур – й (1) по правилу Крамера, т. е. с помощью формул: , , , где ;
реш–е с–мы ур–й (1) в коорд. форме: вектор–решение с-мы (1): ;
2) получим реш–е с–мы ур–й (1) с помощью обратной матр. :
, след., матр.- невырожденная и существует обратная матр. ;
Умножим рав-во (1) слева на матрицу : Вычислим обратную матр. :
Находим алгебр. дополнения для всех эл-тов матрицы и составим из них м-цу :
;
Транспонируем м-цу и получим «присоединённую» м-цу ;
Разделим все эл-ты присоедин. м-цы на опр-ль и получим обратную матр. :
Находим теперь вектор-решение
Задача 15 Установить, являются ли векторы линейно зависимыми.
Вычислим ранг системы векторов методом Гаусса, т. е. выпишем матрицу их координат и приведём её к ступенчатому виду:
Ранг матрицы , след. данная система векторов линейно зависима.
Задача 16 Исследовать систему линейных уравнений на совместность и в случае совместности найти её решение методом Гаусса:
Выпишем расширенную матрицу данной системы ур-й и приведём её к ступенчатому виду:
Имеем ; так как , то по теореме Кронекера - Капелли данная система уравнений совместна, а так как , то система имеет бесконечное множество решений;
Объявим свободной переменной и выпишем общее решение системы в координатной форме:
;
общее решение данной системы ур-й:
Задача 17 Найти матрицу преобразования, выражающего Через , если
Запишем данные преобразования в матричной форме: , где матрицы и
Вектор - столбцы имеют вид: ;
Рассм. ;
Вычислим матрицу .
Задача 18 Найти собственные числа и собственные векторы линейного преобразования, заданного матрицей
.
1) Находим собств. значения линейного преобразования , т. е. корни характеристического уравнения :
Рассм.
; - собств. значения (действ. и различные ) лин. преобр-я ;
2) находим собств. векторы линейного преобразования , соотв. собств. значениям :
А) рассм. ;
Рассм. Пусть , тогда вектор ;
Б) рассм. ;
пусть , тогда вектор ;
В) рассм. ;
рассм.
Пусть , тогда , вектор ;
След. собств. векторы линейного преобразования суть:
< Предыдущая | Следующая > |
---|