Вариант № 02
Задача 1 Разложить вектор
По векторам
и
.
Пусть
, т. е.
;
След., вектор
.
Задача 2 Дано:
Найти ![]()
![]()
.
Задача 3 Вычислить проекцию вектора
на ось Вектора
, Если ![]()
Вект.
; рассм.
; ![]()
Вычислим
;
;
.
Задача 4 Дано:
Найти, при каком
векторы
Будут взаимно перпендикулярны.
Рассм. векторы
и
; по усл-ю задачи
,
т. е.
;
;
;
.
Задача 5 Найти момент силы
, приложенной в точке
относительно точки
, а также модуль и направляющие косинусы вектора силы ![]()
1)
, где
;
;

;
2)
направл. косинусы вектора
: ![]()
Задача 6 Найти площадь параллелограмма, построенного на векторах
Как на сторонах, если

Дано: ABCD и ACED – параллелограммы;
Определить
.
; рассм.
;
;
.
Задача 7 При каком
векторы
будут компланарны?
;
Рассм. ![]()
![]()
Ответ: векторы
Компланарны При
.
Задача 8 Составить уравнение прямой, проходящей через точку
параллельно прямой, соединяющей точки ![]()
Возьмём в качестве направл. вектора искомой прямой
В-р
;
Теперь запишем ур-е прямой
, как прямой, проходящей через
параллельно вектору
:
или
.
Задача 9 Составить уравнения сторон квадрата, если известны координаты вершины
и уравнения
Диагоналей ![]()

1) Опред. коорд. т. М пересечения диагоналей квадрата
, решив с-му ур-й :
;
2) Опред. коорд. вершины С квадрата из условия, что т. М - середина отрезка
:
![]()
3) рассм. ур-я прямых на пл-ти
, проходящих через т. А :
;
Выберем из этих прямых те, которые составляют угол
с диагональю ![]()
(
), т. е. прямые, для которых вып-ся след. соотношения: 
А) рассм. случай 
Б) рассм. случай 
4) рассм. ур-я прямых на пл-ти
, проходящих через т. С :
; выберем из этих прямых те, которые составляют угол
с диагональю
т. е. прямые с угловыми коэф-тами ![]()
![]()
![]()
Задача 10 Составить уравнение плоскости, которая проходит через точку
и имеет нормальный вектор ![]()
Дано: пл-ть
;
;
;
(см. рис). Составить ур-е пл-ти
.
Рассм.
и рассм. вектор
;
В-р
, след.,
, т. е.
; ![]()
Задача 11 Составить канонические уравнения прямой, проходящей через две заданные точки: ![]()
А)
рассм. в-р
запишем канонические
ур-я прямой
как ур-я прямой, проходящей через т. А параллельно вектору
:
;
Б)
рассм. в-р ![]()
канонические ур-я прямой
:
.
Задача 12 Составить уравнение плоскости
, проходящей через прямую
и точку ![]()
Направл. в-р прямой
есть
;
Рассм.
и рассм. вектор
;
Вект. произв-е
будет нормальным вектором искомой плоскости
:
Вычислим
;
Теперь запишем ур-е пл-ти
Как пл-ти, проходящей через т.
перпендикулярно вектору
:
Рассм. произв. т.
и рассм. вектор
;
, ![]()
Задача 13 Вычислить определитель третьего порядка, пользуясь определением; результат проверить разложением
Определителя по первой строке.
![]()
1) Непосредственное вычисление:
![]()
2) Разложение по 1-й строке:
.
Задача 14 Решить систему линейных уравнений по правилу Крамера и с помощью обратной матрицы.
![]()
Запишем данную систему уравнений в матричной форме:
, (1) , где
;
;
;
Рассм. опр-ль матрицы
:
,
след., матр.
- невырожденная и можно применять формулы Крамера и вычислять обратную матр.
;
1) решим с – му ур – й (1) по правилу Крамера, т. е. с помощью формул:
,
,
, где
;
;
;
;
,
,
;
реш–е с–мы ур–й (1) в коорд. форме:
Вектор–решение с-мы (1):
;
2) получим реш–е с–мы ур–й (1) с помощью обратной матр.
:
, след., матр.
- невырожденная и существует обратная матр.
; умножим рав-во (1) слева на матрицу
:
,
; вычислим обратную матр.
: находим алгебр. дополнения
для всех эл-тов матрицы
И составим из них м-цу
:
![]()
![]()
; транспонируем м-цу
и получим «присоединённую» м-цу
;
Разделим все эл-ты присоедин. м-цы
на опр-ль
и получим обратную матр.
:
;
Находим теперь вектор-решение
.
Задача 15 Установить, являются ли векторы
линейно зависимыми.
Вычислим ранг системы векторов
методом Гаусса, т. е. выпишем матрицу их координат и приведём её к ступенчатому виду:
;
Ранг матрицы
, след. данная система векторов линейно зависима.
Задача 16 Исследовать систему линейных уравнений на совместность и в случае совместности найти её решение методом Гаусса.

Выпишем расширенную матрицу данной системы ур-й и приведём её к ступенчатому виду:

Имеем
; так как
, то по теореме Кронекера - Капелли данная система ур-й совместна, а так как
, то система имеет бесконечное множество решений;
Объявим
свободной переменной и выпишем общее решение системы в коорд. форме:
![]()
;
общее решение данной системы ур-й: 
Задача 17 Найти матрицу преобразования, выражающего
Через
, если ![]()
Запишем данные преобразования в матричной форме:
, где матрицы
и
Вектор - столбцы
имеют вид:
;
Рассм.
;
Вычислим матрицу
.
Задача 18 Найти собственные числа и собственные векторы линейного преобразования, заданного матрицей
.
1) Находим собств. значения
линейного преобразования
, т. е. корни характеристического уравнения
; рассм. ![]()
![]()
- собств. значения (действ. и различные ) лин. преобр-я
;
2) находим собств. векторы линейного преобразования
, соотв. собств. значениям
:
А) рассм.
;
Рассм.

Пусть
, тогда вектор
;
Б) рассм.
;
Рассм. ![]()

Пусть
, тогда
,
вектор
;
В) рассм. ![]()
Рассм. ![]()

Пусть
, тогда
,
вектор
;
След., собств. векторы линейного преобразования
суть:
;
;
.
| < Предыдущая | Следующая > |
|---|