6.2. Частные производные. Дифференциал функции
Частной производной функции по переменной В точке называется предел:
, (3)
Где - приращение аргумента . Аналогично определяется Частная производная функции по Переменной в точке :
, (4)
Где - приращение аргумента . Частные производные функции по переменной обозначают различными способами, например:
Аналогично частные производные функции по переменной обозначают следующим образом:
Заметим, что в силу определения частной производной все правила и формулы дифференцирования, введенные для функции одной переменной, сохраняются. Следует лишь помнить, что во всех этих правилах и формулах при нахождении частной производной по какому-либо аргументу все остальные аргументы считаются постоянными.
Частные производные и функции также являются функциями двух переменных и . Поэтому эти функции, в свою очередь, могут иметь частные производные, которые называются Частными производными второго порядкаИсходной Функции и обозначаются следующим образом:
- Вторая частная Производная функции По переменной ;
- вторая частная Производная функции По переменной ;
- Смешанные производные второго порядка функции .
Выражение
Называется полным приращением Функции в точке , а выражение
- полным дифференциалом Функции .
Аналогичные формулы имеют место и для функции трех переменных .
Задание. Показать, что функция удовлетворяет уравнению:
.
Решение. Найдем соответствующие частные производные, входящие в данное уравнение:
Подставим полученные значения частных производных второго порядка от функции в исходное уравнение. Получим:
.
Следовательно, функция удовлетворяет данному уравнению.
< Предыдущая | Следующая > |
---|