3.2. Несобственные интегралы от неограниченных функций
Пусть функция
непрерывна на отрезке
, а при
функция обращается в бесконечность:
. Несобственным интегралом От функции
на отрезке
в данном случае называют предел интеграла
при
и обозначают
. Следовательно, по определению имеем:
. (13)
Если предел в правой части равенства (13) существует и конечен, то говорят, что несобственный интеграл Сходится, в противном случае говорят, что несобственный интеграл Расходится.
Аналогично определяются несобственные интегралы от функции
на отрезке
в других случаях:
1) в случае
:
. (14)
2) в случае
, где
:
. (15)
Заметим, что несобственный интеграл от функции
на отрезке
в случае
, где
, сходится, если сходятся оба несобственных интеграла правой части равенства (15), т. е. существуют оба предела.
Задание 1. Вычислить несобственный интеграл или установить его расходимость:
.
Решение. Данный интеграл является несобственным по бесконечному промежутку
. По определению имеем:
.
Следовательно, данный несобственный интеграл сходится и равен 1.
Задание 2. Вычислить несобственный интеграл или установить его расходимость:
.
Решение. Данный интеграл является несобственным интегралом от функции
на отрезке
в случае
. По определению имеем:
.
Следовательно, данный несобственный интеграл расходится.
| < Предыдущая | Следующая > |
|---|