4.3.5 Линейный оператор и его матрица
Определение. Пусть даны два пространства и . Если по закону каждому вектору поставлен в соответствие вектор , то говорят, что задан оператор (функция, отображение), отображающий в и пишут .
Обозначение: ; – образ, – прообраз.
Определение. Если для любых и из и любых вещественных чисел и имеет место , то оператор называется линейным.
Произвольные отображения линейных пространств изучаются в курсе математического анализа. В курсе линейной алгебры изучаются лишь линейные отображения.
Пример 6. Оператор действует из в по закону , где , и – фиксированный вектор, например, . Оператор переводит вектор из в другой вектор из . Докажем, что он линейный: . Здесь воспользовались свойствами векторного произведения.
Пример 7. Линеен ли оператор , где произвольный вектор, а вектор – фиксированный?
Решение. , так как , . Следовательно, оператор – нелинейный.
Пусть даны два пространства и и оператор , действующий из в . Пусть в есть базис , а в – базис .
Подействовав оператором на базисные векторы пространства , получим векторы из , которые можно разложить по базису с коэффициентами линейных комбинаций :
Строим матрицу таким образом, чтобы в ее столбцах стояли координаты образов базисных векторов пространства относительно базисных векторов пространства :
.
Матрица называется матрицей линейного оператора , действующего из в . Таким образом, если оператор , то матрица этого оператора имеет размер , то есть у нее строк и столбцов.
Замечание. Если в и выбрать другие базисы, то в этих базисах матрица линейного оператора будет иметь другой вид.
Из определения матрицы линейного оператора следует, что, зная закон (оператор), по которому вектору сопоставляется вектор , можно построить матрицу, и наоборот, любой матрице соответствует некоторый линейный оператор.
Пример 8. Построить матрицу линейного оператора, действующего из в по закону , где векторы и заданы относительно канонического базиса.
Решение. Подействуем оператором на базисные векторы :
;
;
.
Таким, образом, – искомая матрица.
Пример 9. Пусть в выбран базис , , , а в выбран базис , . Найти матрицу линейного оператора, действующего из в по закону , где .
Решение. ; ;
; .
Пример 10. Дана матрица . Найти линейный оператор (закон, по которому действует оператор).
Решение. Матрица – это матрица линейного оператора, действующего из в . Пусть в базис , в базис . Так как в столбцах матрицы стоят координаты векторов относительно базиса , то
(1)
Пусть произвольный вектор из , где – координаты этого вектора в базисе , тогда . Действуя оператором на вектор и учитывая линейность оператора, получим: .
Учитывая (1), имеем:
.
Таким образом, оператор действует по закону
.
Зная матрицу оператора , результат его действия на вектор можно найти в матричной форме. Пусть известна матрица оператора размера с элементами . В этом случае оператор с такой матрицей действует из в . Если – любой вектор из , то результат действия оператора на вектор можно найти по формуле:
,
Где – координаты вектора .
Пример 11. Операторы и действуют в пространстве по законам , , где ; ( – скалярное произведение векторов и ). Найти координаты вектора в каноническом базисе.
Решение. Координаты вектора можно найти двумя способами:
А) найдем матрицу .
Строим матрицу в каноническом базисе:
; ;
.
.
Строим матрицу в каноническом базисе:
; ;
.
;
.
.
Этот способ решения называется матричным;
Б) операторный способ.
. Подействуем оператором на вектор :
, теперь на полученный вектор подействуем оператором :
.
Для самостоятельной работы.
1. Оператор действует по закону:
.
Найти его матрицу в каноническом базисе.
Ответ: .
2. Оператор действует в плоскости и осуществляет зеркальное отражение относительно прямой . Доказать, что он линейный и найти его матрицу в каноническом базисе.
Ответ: .
3. Дана матрица .
А) Найти оператор, матрицей которого является матрица .
Б) Найти образ вектора .
Ответ: .
< Предыдущая | Следующая > |
---|