09. Тема 6. Численное дифференцирование
Найти значение предельной нормы замещения труда фондами
в точке и , если для различных значений K и L мы можем
наблюдать значение валового выпуска , где F – некоторая неизвестная производственная функция.
Решение. Поскольку (см. [5 ,6]), то нам требуется
построить приближенное значение частных производных в точке . Для нахождения этих значений воспользуемся формулой численного дифференцирования (Л6.2) на некотором отрезке. Эта формула дает наименьшую погрешность в середине отрезка, на котором строится аппроксимация производной. Поэтому будем строить аппроксимацию
частных производных на отрезке с центром в точке 2. Вычислим требуемые значения валового выпуска X, считая другую переменную равной двум:
(1, 2) (2, 2) (4, 2) 6,964 8 8,676 |
(2, 1) (2, 2) (2, 4) 4,595 8 11,065 |
Теперь по формуле (Л6.1) вычисляем производные на отрезке :
Приближенное значение равно для и . Тогда значение в точке (2, 2) равно .
Для сравнения приведем точное значение . Значения в таблице были вычислены для производственной функции Кобба-Дугласа (см. [5 ,6]). Для нее
; .
Отсюда видно, что аппроксимация частной производной по переменной L оказалась недостаточно точной, и значения различаются на единицу.
Задачи для самостоятельного решения по теме 6
1. Найти приближенное значение предельной нормы замещения труда фондами в точке и . Значение валового выпуска X вычислить для функции в трех точках K и L, равных . Сравнить приближенное значение с точным.
< Предыдущая | Следующая > |
---|