03. Примеры игр

Игра 1. Зачет

Пусть игрок 1 - студент, готовящийся к зачету, а игрок 2 - преподаватель, принимающий зачет. Будем считать, что у студента две стратегии: А1- хорошо подготовиться к зачету; А2 - не подготовиться. У преподавателя имеется тоже две стратегии: В1 - поставить зачет; В2 - не поставить зачет. В основу оценки значений выигрышей игроков можно положить, например, следующие соображения, отраженные в матрицах выигрышей

В1

В2

В1

В2

А1

+ (5)

(оценили по заслугам)

- (-6)

(обидно)

А1

+ (0)

(все нормально)

- (-3)

(проявил несправедли вость)

А2

(1)

(удалось словчить)

(0)

(получил по заслугам)

А2

-2

(дал себя обмануть)

- 1

(студент придет еще раз)

Выигрыши студента

Выигрыши преподавателя

Данная игра в соответствии с приведенной выше классификацией является стратегической, парной, бескоалиционной, конечной, описана в нормальной форме, с ненулевой суммой. Более кратко данную игру можно назвать биматричной.

Задача состоит в определении оптимальных стратегий для студента и для преподавателя.

Игра 2. Морра

Игрой “морра” называется игра любого числа лиц, в которой все игроки одновременно показывают (“выбрасывают”) некоторое число пальцев. Каждой ситуации приписываются выигрыши, которые игроки в условиях этой ситуации получают из “банка”. Например, каждый игрок выигрывает показанное им число пальцев, если все остальные игроки показали другое число; он ничего не выигрывает во все остальных случаях. В соответствии с приведенной классификацией данная игра является стратегической; в общем случае, множественной (в этом случае игра может быть бескоалиционной, коалиционной, и кооперативной) конечной.

В частном случае, когда игра парная - это будет матричная игра (матричная игра всегда является антагонистической).

Пусть два игрока «выбрасывают» одновременно один, два или три пальца. При четной сумме выигрывает первый игрок, при нечетной – второй. Выигрыш равен сумме «выброшенных пальцев». Таким образом, в данном случае каждый из игроков имеет по три стратегии, а матрица выигрышей первого игрока (проигрышей второго) имеет вид:

В1

В2

В3

А1

2

-3

4

А2

-3

4

-5

А3

4

-5

6

Где АI – стратегия первого игрока, заключающаяся в «выбрасывании» I Пальцев;

ВJ – стратегия второго игрока, заключающаяся в «выбрасывании» J Пальцев.

Что должен делать каждый из игроков, чтобы обеспечить себе максимальный выигрыш?

Игра 3. Борьба за рынки

Некая фирма А, имея в своем распоряжении 5 условных денежных единиц, пытается удержать два равноценных рынка сбыта. Ее конкурент (фирма В), имея сумму равную 4 условным денежным единицам, пытается вытеснить фирму А с одного из рынков. Каждый из конкурентов для защиты и завоевания соответствующего рынка может выделить целое число единиц своих средств. Считается, что если для защиты хотя бы одного из рынков фирма А выделит меньше средств, чем фирма В, то она проигрывает, а во всех остальных случаях – выигрывает. Пусть выигрыш фирмы А равен 1, а проигрыш равен (-1), тогда игра сводится к матричной игре, для которой матрица выигрышей фирмы А (проигрышей фирмы В) имеет вид:

В0

В1

В2

В3

В4

А0

1

-1

-1

-1

-1

А1

1

1

-1

-1

-1

А2

-1

1

1

-1

-1

А3

-1

-1

1

1

-1

А4

-1

-1

-1

1

1

А5

-1

-1

-1

-1

1

Здесь АI – стратегия фирмы А, заключающаяся в выделении I Условных денежных единиц на защиту первого рынка; ВJ – стратегия фирмы В, заключающаяся в выделении J Условных денежных единиц на завоевание первого рынка.

Если бы на защиту или завоевание рынков фирмы могли выделить любое количество средств из имеющихся, то игра стала бы бесконечной.

© 2011-2024 Контрольные работы по математике и другим предметам!