01. Основные понятия теории игр и их лассификация. Предмет и задачи теории игр
Первую попытку создать математическую теорию игр предпринял в 1921 г. Э. Борель. Как самостоятельная область науки впервые теория игр была систематизировано изложена в монографии Дж. фон Неймана и О. Моргенштерна “Теория игр и экономическое поведение” в 1944 г. С тех пор многие разделы экономической теории (например, теория несовершенной конкуренции, теория экономического стимулирования и др.) развивались в тесном контакте с теорией игр [2]. Теория игр с успехом применяется и в социальных науках (например, анализ процедур голосования, поиск равновесных концепций, определяющих кооперативные и некооперативные поведения лиц). Как правило, избиратели отводят кандидатов, представляющих крайние точки зрения, но при избрании одного из двух кандидатов, предлагающих различные компромиссные решения, возникает борьба. Даже идея Руссо об эволюции от «естественной свободы» к «гражданской свободе» формально соответствует с позиций теории игр точке зрения на кооперацию.
Игра - это идеализированная математическая модель коллективного поведения нескольких лиц (игроков), интересы которых различны, что и порождает конфликт. Конфликт не обязательно предполагает наличие антагонистических противоречий сторон, но всегда связан с определенного рода разногласиями. Конфликтная ситуация будет антагонистической, если увеличение выигрыша одной из сторон на некоторую величину приводит к уменьшению выигрыша другой стороны на такую же величину и наоборот. Антагонизм интересов порождает конфликт, а совпадение интересов сводит игру к координации действий (кооперации).
Примерами конфликтной ситуации являются ситуации, складывающиеся во взаимоотношениях покупателя и продавца; в условиях конкуренции различных фирм; в ходе боевых действий и др. Примерами игр являются и обычные игры: шахматы, шашки, карточные, салонные и др. (отсюда и название “теория игр” и ее терминология).
В большинстве игр, возникающих из анализа финансово-экономических, управленческих ситуаций, интересы игроков (сторон) не являются строго антагонистическими ни абсолютно совпадающими. Покупатель и продавец согласны, что в их общих интересах договориться о купле-продаже, однако они энергично торгуются при выборе конкретной цены в пределах взаимной выгодности.
Теория игр - это математическая теория конфликтных ситуаций.
Цель теории игр - выработка рекомендаций по разумному поведению участников конфликта (определение оптимальных стратегий поведения игроков).
От реального конфликта игра отличается тем, что ведется по определенным правилам. Эти правила устанавливают последовательность ходов, объем информации каждой стороны о поведении другой и результат игры в зависимости от сложившейся ситуации. Правилами устанавливаются также конец игры, когда некоторая последовательность ходов уже сделана, и больше ходов делать не разрешается.
Теория игр, как и всякая математическая модель, имеет свои ограничения. Одним из них является предположение о полной (“идеальной”) разумности противников. В реальном конфликте зачастую оптимальная стратегия состоит в том, чтобы угадать, в чем противник “глуп” и воспользоваться этой глупостью в свою пользу [1].
Еще одним недостатком теории игр является то, что каждому из игроков должны быть известны все возможные действия (стратегии) противника, неизвестно лишь то, каким именно из них он воспользуется в данной партии. В реальном конфликте это обычно не так: перечень всех возможных стратегий противника как раз и неизвестен, а наилучшим решением в конфликтной ситуации нередко будет именно выход за пределы известных противнику стратегий, “ошарашивание” его чем-то совершенно новым, непредвиденным [1].
Теория игр не включает элементов риска, неизбежно сопровождающего разумные решения в реальных конфликтах. Она определяет наиболее осторожное, “перестраховочное” поведение участников конфликта.
Кроме того, в теории игр находятся оптимальные стратегии по одному показателю (критерию). В практических ситуациях часто приходится принимать во внимание не один, а несколько числовых критериев. Стратегия, оптимальная по одному показателю, может быть неоптимальной по другим.
Сознавая эти ограничения и потому, не придерживаясь слепо рекомендаций, даваемых теорий игр, можно все же выработать вполне приемлемую стратегию для многих реальных конфликтных ситуаций.
В настоящее время ведутся научные исследования, направленные на расширение областей применения теории игр.
Следующая > |
---|