22.2. Основные теоремы двойственности
ТЕОРЕМА 1. Если одна из двойственных задач имеет оптимальное решение, то другая также имеет оптимальное решение, причем для любых оптимальных решений и выполняется равенство
Если одна из двойственных задач неразрешима ввиду того, что L()Max → (или S()Min → -), тo другая задача не имеет допустимых решений.
ТЕОРЕМА 2. Для оптимальности допустимых решений и пары двойственных задач необходимо и достаточно, чтобы они удовлетворяли системе уравнений
Теоремы позволяют определить оптимальное решение одной из пары задач по решению другой.
< Предыдущая | Следующая > |
---|