21.3. Анализ эффективности использования производственного потенциала предприятия
Предприятие располагает тремя производственными ресурсами (сырьем, оборудованием, электроэнергией) и может организовать производство продукции двумя различными способами. Расход ресурсов за один месяц и общий ресурс при каждом способе производства даны в табл. 21.2 (в усл. ед.).
При первом способе производства предприятие выпускает за один месяц 3 тыс. изделий, при втором — 4 тыс. изделий.
Сколько месяцев должно работать предприятие каждым из этих способов, чтобы при наличных ресурсах обеспечить максимальный выпуск продукции?
Решение. Составим математическую модель задачи. Обозначим: X1 — время работы предприятия первым способом, X2 — время работы предприятия вторым способом.
Математическая модель имеет вид
При ограничениях:
Приведем задачу к каноническому виду:
При ограничениях:
Составляем симплексную таблицу 1-го шага (табл. 21.3).
Получим решение:
В индексной строке ΔJ имеются две отрицательные оценки, значит, найденное решение не является оптимальным и его можно улучшить. В качестве ключевого столбца следует принять столбец базисной переменной Х2, а за ключевую строку взять строку переменной X3, где min (4/2,3/l, 8/1) = min (2, 3, 8) = 2.
Ключевым элементом является (2). Вводим в столбец базисной переменной Х2, выводим Х3. Составляем симплексную таблицу 2-го шага (табл. 21.4).
Получим
В индексной строке имеется одна отрицательная оценка. Полученное решение можно улучшить. Ключевым элементом является (1/2). Составляем симплексную таблицу 3-го шага (табл. 21.5).
Все оценки свободных переменных ΔJ ≥ 0, следовательно, найденное опорное решение является оптимальным:
Таким образом, по первому способу предприятие должно работать два месяца, по второму — один месяц, при этом максимальный выпуск продукции составит 10 тыс. ед.
< Предыдущая | Следующая > |
---|