18.6.2. Статистическое распределение выборки
Пусть из генеральной совокупности извлечена выборка объема П, в которой значение X1 некоторого исследуемого признака Х наблюдалось П1 раз, значение X2 — п2 раз, ..., значение XK — Nk раз. Значения Xi называются Вариантами, а их последовательность, записанная в возрастающем порядке,— Вариационным рядом. Числа Ni называются Частотами, а их отношения к объему выборки
— Относительными частотами. При этом Ni = П. Модой Мo называется варианта, имеющая наибольшую частоту. Медианой те называется варианта, которая делит вариационный ряд на две части с одинаковым числом вариант в каждой. Если число вариант нечетно, т. е. K = 2L + 1, то Me = Xl+1; если же число вариант четно (k = 2L), То те = (Xl + Xl+1)/2. Размахом варьирования называется разность между максимальной и минимальной вариантами или длина интервала, которому принадлежат все варианты выборки:
Перечень вариант и соответствующих им частот называется Статистическим распределением выборки. Здесь имеется аналогия с законом распределения случайной величины: в теории вероятностей — это соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике — это соответствие между наблюдаемыми вариантами и их частотами (относительными частотами). Нетрудно видеть, что сумма относительных частот равна единице: Wi = 1.
Пример 2. Выборка задана в виде распределения частот:
Найти распределение относительных частот и основные характеристики вариационного ряда.
Решение. Найдем объем выборки: П = 2 + 4 + 5 + 6 + 3 = 20. Относительные частоты соответственно равны W1 = 2/20 = 0,1; W2 = 4/20 = 0,2; W3 = 5/20 = 0,25; W4 = 6/20 = 0,3; W5 = 3/20 = 0,15. Контроль: 0,1 + 0,2 + 0,25 + 0,3 + 0,15 = 1. Искомое распределение относительных частот имеет вид
Мода этого вариационного ряда равна 12. Число вариант в данном случае нечетно: K = 2 ∙ 2 + 1, поэтому медиана Me = X3 = 8. Размах варьирования, согласно формуле (18.48), R = 17 – 4 = 13.
< Предыдущая | Следующая > |
---|