17.4.2. Формула полной вероятности
Пусть события В1, В2, …, Вп несовместны и образуют полную группу, т. е., согласно теореме 17.2, выполняется равенство
Пусть также событие А может наступить при условии появления одного из событий ВI, причем известны как вероятности P(Bi), так и условные вероятности PBi(A) (I = 1, 2, ... , П). В таком случае формула для вероятности события А определяется следующей теоремой.
ТЕОРЕМА 6. Вероятность события А, появление которого возможно лишь при наступлении одного из несовместных событий Bi, образующих полную группу (i = 1, 2, ... ,п), равна сумме попарных произведений каждого из этих событий на соответствующую условную вероятность появления события А:
Пример 3. В двух урнах находятся белые и красные шары: в первой — 4 белых и 5 красных, во второй — 7 белых и 3 красных. Из второй урны наудачу взяли шар и переложили его в первую урну. Найти вероятность того, что наудачу взятый после этого из первой урны шар будет белым.
Решение. Перекладывание из второй урны в первую белого шара (событие В1) и красного шара (событие В2) образует полную группу независимых событий. Их вероятности соответственно P(B1) = 0,7 и Р(В2) = 0,3. Условные вероятности извлечения из первой урны белого шара (событие А) при добавлении туда белого или красного шара из второй урны соответственно равны РB1(А) = 0,5 и РB2(А) = 0,4. Искомая вероятность находится по формуле (17.14) при П = 2:
Пример 4. В двух ящиках находятся детали: в первом — 10 штук и из них 3 нестандартные, а во втором — 20 штук и из них 8 нестандартных. Из каждого ящика наудачу вынуто по одной детали, а потом из этих двух деталей наудачу взята одна. Найти вероятность того, что эта деталь окажется стандартной.
Решение. При первой выборке двух деталей возможны четыре случая, которые образуют полную группу независимых событий. События Bss, Bsn, Bns, Bnn соответствуют случаям изъятия: из первого и второго ящиков по стандартной детали, из первого ящика — стандартной и из второго — нестандартной деталей, из первого ящика — нестандартной и из второго — стандартной, из первого и второго ящиков по нестандартной детали. В свою очередь события ВIk (I, K = S, N) представляют собой произведения независимых событий — изъятия из каждого ящика по детали, и потому их вероятности равны соответствующим произведениям вероятностей этих изъятий: P(Bss) = 0,7 • 0,6 = 0,42; P(Bsn) = 0,7 • 0,4 = 0,28; P(Bns) = 0,3 • 0,6 = 0,18; P(Bnn) = 0,3 • 0,4 = 0,12. Условные вероятности выборки из двух деталей стандартной, согласно перечисленным выше возможным случаям, равны:
Теперь, согласно теореме 17.6 и формуле (17.14), получаем искомую вероятность события А:
< Предыдущая | Следующая > |
---|