16.3. Модель Леонтьева многоотраслевой экономики
Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными отраслями. Каждая отрасль, с одной стороны, является призводителем, а с другой — потребителем продукции, выпускаемой другими отраслями. Возникает довольно непростая задача расчета связи между отраслями через выпуск и потребление продукции разного вида. Впервые эта проблема была сформулирована в виде Математической модели в 1936 г. в трудах известного американского экономиста В. В.Леонтьева, который попытался проанализировать причины экономической депрессии США 1929-1932 гг. Эта модель основана на алгебре матриц и использует аппарат матричного анализа.
Балансовые соотношения
Для простоты будем полагать, что производственная сфера хозяйства представляет собой П отраслей, каждая из которых производит свой однородный продукт. Для обеспечения своего производства каждая отрасль нуждается в продукции других отраслей (производственное потребление). Обычно процесс производства рассматривается за некоторый период времени; в ряде случаев такой единицей служит год.
Введем следующие обозначения:
— Xi — общий объем продукции I-й отрасли (ее валовой выпуск);
— Xij — объем продукции I-й отрасли, потребляемый J-Й отраслью при производстве объема продукции Xj;
— Yi — объем продукции I-й отрасли, предназначенный для реализации (потребления) в непроизводственной сфере, или так называемый продукт конечного потребления. К нему относятся личное потребление граждан, удовлетворение общественных потребностей, содержание государственных институтов и т. д.
Балансовый принцип связи различных отраслей промышленности состоит в том, что валовой выпуск I-Й отрасли должен быть равным сумме объемов потребления в производственной и непроизводственной сферах. В самой простой форме (гипотеза линейности, или простого сложения) балансовые соотношения имеют вид
Уравнения (16.2) называются Соотношениями баланса.
Поскольку продукция разных отраслей имеет разные измерения, будем в дальнейшем иметь в виду стоимостный баланс.
< Предыдущая | Следующая > |
---|