14.1. Определители. Операции над определителями и основные свойства
Любой квадратной матрице А порядка N ставится в соответствие по определенному закону некоторое число, называемое Определителем, или Детерминантом, N-го порядка этой матрицы. Начнем с определителей второго и третьего порядков.
Пусть дана матрица
Тогда ее определитель второго порядка вычисляется по формуле
Правило вычисления определителя второго порядка очевидно: из произведения элементов на главной диагонали вычитается произведение элементов на второй диагонали матрицы А. Нетрудно видеть, что формула (14.1) представляет собой алгебраическую сумму двух попарных произведений элементов матрицы А, стоящих в разных строках и разных столбцах.
В дальнейшем мы не будем приводить матрицу, для которой вычисляется определитель, так как в записи определителя содержатся все элементы соответствующей матрицы.
Определитель третьего порядка вычисляется по формуле
Правило вычисления определителя третьего порядка следующее. Это алгебраическая сумма шести тройных произведений элементов, стоящих в разных строках и разных столбцах; со знаком плюс берутся произведения, сомножители которых находятся на главной диагонали и в вершинах треугольников, чьи основания параллельны главной диагонали; со знаком минус — произведения, сомножители которых стоят на не главной диагонали и в вершинах треугольников с основаниями, параллельными этой диагонали (рис. 14). Заметим, что каждое слагаемое в формуле (14.2) содержит по одному элементу из каждой строки и каждого столбца соответствующей матрицы.
Рассмотрим определитель N-го порядка
Теперь с учетом подмеченных выше закономерностей перейдем к определению для общего случая.
Определение 1. Определителем матрицы А N-го порядка называется алгебраическая сумма N! произведений N-го порядка элементов этой матрицы, причем в каждое произведение входит по одному элементу из каждой строки и каждого столбца данной матрицы.
< Предыдущая | Следующая > |
---|