10.3.3. Неоднородные уравнения второго порядка

Что касается решения неоднородных дифференциальных уравнений с постоянными коэффициентами, то их решение пол­ностью основывается на следующей фундаментальной теореме.

ТЕОРЕМА 4. Общее решение неоднородного уравнения (10.8) Состоит из суммы его частного решения и общего ре­шения соответствующего однородного уравнения (10.9).

В ряде случаев удается "угадать" или подобрать частное решение неоднородного уравнения по виду его правой части. Рассмотрим несколько примеров решения таких уравнений.

Решение. Соответствующее однородное уравнение было рассмотрено в примере 1. Исходя из вида правой части, бу­дем искать частное решение данного неоднородного уравнения в виде константы: = С. Подставляя это решение в уравне­ние, получаем, что С = 2. Отсюда следует, что общее решение неоднородного уравнения имеет вид

Решение. Для отыскания частного решения этого неодно­родного уравнения воспользуемся методом Неопределенных ко­эффициентов, не содержащим процесса интегрирования. Бу­дем искать это решение в виде многочлена той же степени, что и правая часть, т. е. = Ax + В, где А и В — неизвест­ные коэффициенты. Дифференцируя дважды и подставляя в исходное уравнение, получаем

Приравнивая коэффициенты при одинаковых степенях Х в обе­их частях этого равенства, находим 9А = 9, -6А + 9В = 0. Отсюда А = 1, В = 2/3, т. е. = X + 2/3. Соединяя это реше­ние с общим решением соответствующего однородного урав­нения (см. пример 2), получаем общее решение неоднородного уравнения:

Решение. В этом случае частное решение (X) ищем в виде Се2X. Подстановка в данное уравнение дает C = 1. Соединяя полученное частное решение с общим решением однородного уравнения (см. пример 3), окончательно имеем

Примечание 1. В общем случае, когда характеристи­ческое уравнение содержит нулевой корень кратности S, а пра­вая часть неоднородного уравнения представляет собой много­член Рп(х) степени П, частное решение этого уравнения ищется в виде Qn(X)Xs, где Qn(X) — многочлен степени П С неизвестны­ми коэффициентами, которые определяются вышеуказанным методом.

Примечание 2. В общем случае, когда правая часть неоднородного уравнения имеет вид ЕRx, его частное решение ищется в виде (х) = Xserx, где S кратность корня K = R в характеристическом уравнении (10.12).

© 2011-2024 Контрольные работы по математике и другим предметам!