10.1. Дифференциальные уравнения второго порядка. Основные понятия теории
Определение 1. Дифференциальным уравнением Второго порядка называется уравнение вида
Где Х — независимая переменная, У — искомая функция, У' и У" — соответственно ее первая и вторая производные.
Примеры дифференциальных уравнений второго порядка:
Будем рассматривать уравнения, которые можно записать в виде, разрешенном относительно второй производной:
Как и в случае уравнения первого порядка, решением уравнения (10.1) называется функция У = φ(X), определенная на некотором интервале (А, B), которая обращает это уравнение в тождество. График решения называется Интегральной кривой. Имеет место теорема существования и единственности решения уравнения второго порядка.
ТЕОРЕМА 1 (теорема Коши). Пусть функция f(x, у, у') и ее частные производные и , непрерывны в некоторой области D пространства переменных (x, у, у'). Тогда для любой внутренней точки М0(х0, у0, у'0) этой области существует единственное решение уравнения (10.2), удовлетворяющее условиям:
Геометрический смысл этой теоремы (ее доказательство мы не приводим) заключается в том, что через заданную точку (X0, Y0) на координатной плоскости Оху проходит Единственная интегральная кривая с заданным угловым коэффициентом Y0' касательной (рис. 10.1).
Условия (10.3) называются Начальными условиями, а задачу отыскания решения уравнения (10.2) по заданным начальным условиям называют Задачей Коши.
Общим решением уравнения (10.2) в некоторой области D Называется функция У = φ(х, С1, С2), если она является решением этого уравнения при любых постоянных величинах С1 и C2, которые могут быть определены единственным образом при заданных начальных условиях (10.3). Частным решением Уравнения (10.2) называется общее решение этого уравнения при фиксированных значениях постоянных С1 и C2: У = φ(х, С10, С20).
Рассмотрим для пояснения уравнение У" = 0. Его общее решение получается при двухкратном интегрировании этого уравнения:
Где С1 и C2 — произвольные постоянные. Это решение пред ставляет собой семейство прямых, проходящих в произвольных направлениях, причем через каждую точку плоскости Охy Проходит бесконечное число таких прямых. Поэтому для выделения частного решения, проходящего через заданную точку (х0, y0), следует задать еще и угловой коэффициент прямой, совпадающей в данном случае со своей касательной. Например, найдем частное решение, удовлетворяющее начальным условиям
Т. е. нужно найти прямую, проходящую через точку M (l, 2), с угловым коэффициентом, равным единице. Подстановка начальных условий в общее решение уравнения приводит к системе двух линейных уравнений относительно постоянных С1 и C2
Откуда С1 = 1, C2 = 1. Таким образом, искомое частное решение — это прямая У = х + 1.
< Предыдущая | Следующая > |
---|