121. Геометрический и физический смысл производной

Рассмотрим график функции в декартовой системе координат (рис. 10.2). Возьмем на графике точку и точку . Проведем через эти точки прямую . Эта прямая называется Секущей. Ее уравнением будет , а угловой коэффициент этой прямой равен тангенсу угла наклона секущей:

Если то секущая MN поворачивается вокруг точки и переходит в касательную с угловым коэффициентом

Если , то секущая MN поворачивается вокруг точки М и в пределе переходит в касательную с угловым коэффициентом .

Угловой коэффициент касательной к графику функции в данной точке равен значению производной функции в этой
точке: .

Геометрический смысл производной состоит в том, что производная равна угловому коэффициенту касательной к графику функции в данной точке.

Значение производной в точке равно тангенсу угла наклона касательной (рис. 10.3).

Нормаль – это прямая, перпендикулярная к касательной в точке касания (рис. 10.3).

Уравнение касательной к кривой в точке запишем как уравнение прямой, которая проходит через заданную точку: .

Уравнение нормали к кривой в точке запишем так: .

Пример 1. Напишите уравнение касательной к графику функции в точке с абсциссой .

Решение. 1) Найдем значение функции, если : .

2) Найдем первую производную функции: .

3) Найдем значение производной, если : .

4) Запишем уравнение касательной, которая проходит через данную точку : или .

Ответ. Уравнение касательной: .

Пример 2. Напишите уравнение нормали к графику функции в точке с абсциссой .

Решение. 1) Найдем значение функции, если : .

2) Найдем первую производную функции: .

3) Найдем значение производной, если : .

4) Запишем уравнение нормали, которая проходит через данную точку : или .

Ответ. Уравнение нормали: .

Рассмотрим задачу о свободном падении тела и найдем мгновенную скорость его движения.

Из физики мы знаем, что , где H – высота падения, G – ускорение свободного падения, T – время падения.

За время тело проходит расстояние , а за время – расстояние . Приращение аргумента (времени T) будет равно , откуда .

Приращение функции будет равно:

Найдем предел отношения приращения функции к приращению ее аргумента T , если ΔT Стремится к нулю:

.

В левой части равенства мы получили значение производной функции , а в правой части значение мгновенной скорости тела в момент времени T0.

Физический смысл производной. Производная функции в точке есть мгновенная скорость изменения функции в точке , т. е. скорость протекания процесса, который описывается зависимостью .

Например, если дана функция , то ее производная будет , тогда значение производной в точке будет , а значение производной в точке будет . Это значит, что в точке функция изменяется в 4 раза быстрее аргумента , а в точке изменяется в 6 раз быстрее (т. е. различная скорость изменения функции или протекания процесса). В этом и состоит физический смысл производной.

Операция нахождения (взятия) производной функции называется Дифференцированием функции.

Ответьте на вопросы

1. Что показывает угловой коэффициент K в уравнении прямой ?

2. Чему равен угловой коэффициент касательной к кривой в точке ?

3. Как найти угловой коэффициент нормали к кривой в точке ?

4. В чем состоит геометрический смысл производной?

5. В чем состоит физический смысл производной?

© 2011-2024 Контрольные работы по математике и другим предметам!