05. Непрерывность функции
Пусть функция f(x) определена на некотором множестве Е и х0 – предельная точка множества Е.
Функция f(x) называется непрерывной в точке х0, если
1. Она определена в точке х0
2. Существует конечный предел
3. Этот предел равен значению функции в точке х0.
Иначе говоря, функция у=f(x) называется непрерывной в точке, если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, то есть , где - приращение аргумента и - соответствующее приращение функции.
< Предыдущая | Следующая > |
---|