10. Метод наименьших квадратов
Задача наименьших квадратов возникает в самых различных областях науки и техники, например, к ней приходят при статистической обработке экспериментальных данных. Пусть функция задана таблицей приближенных значений , полученных с ошибками Предположим, что для аппроксимации функции используется линейная модель: где - заданные базисные функции, - параметры модели, являющиеся одновременно коэффициентами обобщенного многочлена. Часто используется одна из наиболее простых моделей - полиномиальная модель.
В случае, когда уровень неопределенности исходных данных высок, нет смысла требовать точного совпадения значений обобщенного многочлена в точках с заданными значениями , то есть использовать интерполяцию. Кроме того, при интерполяции происходит повторение ошибок наблюдений, в то время как при обработке экспериментальных данных желательно сглаживание ошибок. Тем не менее нужно потребовать, чтобы
(3.1.1)
Эта же система в матричной форме имеет вид (3.1.2)
Итак, линейная задача метода наименьших квадратов состоит в следующем. Надо найти обобщенный многочлен , для которого среднеквадратическое уклонение Этот многочлен называется Многочленом наилучшего среднего квадратического приближения. Так как набор функций всегда заранее определен, задача заключается в нахождении вектора при условии
Уравнение называется нормальной системой метода наименьших квадратов.
< Предыдущая | Следующая > |
---|