11.5. О чем говорят парадоксы

Никакого исчерпывающего перечня логических парадоксов не су­ществует, да он и невозможен.

Рассмотренные парадоксы — это только часть из всех обнаруженных к настоящему времени. Вполне вероятно, что в будущем будут откры­ты и многие другие и даже совершенно новые их типы. Само понятие па­радокса не является настолько определенным, чтобы удалось составить список хотя бы уже известных парадоксов.

Необходимым признаком логических парадоксов считается логиче­ский словарь. Парадоксы, относимые к логическим, должны быть сфор­мулированы в логических терминах. Однако в логике нет четких критериев деления терминов на логические и внелогические. Логика, занимающаяся правильностью рассуждений, стремится свести понятия, от которых за­висит правильность практически применяемых выводов, к минимуму. Но этот минимум не предопределен однозначно. Кроме того, в логических терминах можно сформулировать и внелогические утверждения. Исполь­зует ли конкретный парадокс только чисто логические посылки, далеко не всегда удается определить однозначно.

Логические парадоксы не отделяются жестко от всех иных парадок­сов, подобно тому как последние не отграничиваются ясно от всего не па­радоксального и согласующегося с господствующими представлениями.

На первых порах изучения логических парадоксов казалось, что их можно выделить по нарушению некоторого, еще не исследованного пра­вила логики. Особенно активно претендовал на роль такого правила вве­денный Расселом «принцип порочного круга». Этот принцип утвержда­ет, что совокупность объектов не может содержать членов, определимых только посредством этой же совокупности.

Все парадоксы имеют одно общее свойство — самоприменимость, или циркулярность. В каждом из них объект, о котором идет речь, характери­зуется посредством некоторой совокупности объектов, к которой он сам принадлежит. Если мы выделяем, например, человека как самого хит­рого в классе, мы делаем это при помощи совокупности людей, к кото­рой относится и данный человек (при помощи «его класса»). И если мы говорим: «Это высказывание ложно», мы характеризуем интересующее нас высказывание путем ссылки на включающую его совокупность всех ложных высказываний.

Во всех парадоксах имеет место самоприменимость, а значит, есть как бы движение по кругу, приводящее в конце концов к исходному пункту. Стремясь охарактеризовать интересующий нас объект, мы обращаемся к той совокупности объектов, которая включает его. Однако оказывает­ся, что сама она для своей определенности нуждается в рассматриваемом объекте и не может быть ясным образом понята без него. В этом круге, возможно, и кроется источник парадоксов.

Ситуация осложняется, однако, тем, что такой круг имеется также во многих совершенно не парадоксальных рассуждениях. Циркулярным является огромное множество самых обычных, безвредных и вместе с тем удобных способов выражения. Такие примеры, как «самый большой из всех городов», «наименьшее из всех натуральных чисел», «один из элек­тронов атома железа» и т. п., показывают, что далеко не всякий случай самоприменимости ведет к противоречию и что она широко используется не только в обычном языке, но и в языке науки.

Простая ссылка на использование самоприменимых понятий недо­статочна, таким образом, для дискредитации парадоксов. Необходим еще какой-то дополнительный критерий, отделяющий самоприменимость, ве­дущую к парадоксу, от всех иных ее случаев.

Было много предложений на этот счет, но удачного уточнения цир - кулярности так и не было найдено. Невозможным оказалось охаракте­ризовать циркулярность таким образом, чтобы каждое циркулярное рас­суждение вело к парадоксу, а каждый парадокс был итогом некоторого циркулярного рассуждения.

Попытка найти какой-то специфический принцип логики, нарушение которого было бы отличительной особенностью всех логических парадок­сов, ни к чему определенному не привела.

Несомненно полезной была бы какая-то классификация парадок­сов, подразделяющая их на типы и виды, группирующая одни парадоксы и противопоставляющая их другим. Однако и в этом деле ничего устой­чивого не было достигнуто.

Не всегда парадокс выступает в таком прозрачном виде, как в слу­чае, скажем, парадокса лжеца или парадокса Рассела. Иногда парадокс оказывается своеобразной формой постановки проблемы, относительно которой сложно даже решить, в чем именно последняя состоит. Размыш­ление над такими проблемами обычно не приводит к какому-то опреде­ленному результату. Но и оно, несомненно, полезно в качестве логиче­ской тренировки.

Древнегреческий философ Горгий написал сочинение с интригующим названием «О несуществующем, или О природе».

Рассуждение Горгия о несуществовании природы разворачивается так. Сначала доказывается, что ничего не существует. Как только дока­зательство завершается, делается как бы шаг назад и предполагается, что нечто все-таки существует. Из этого допущения выводится, что сущест­вующее непостижимо для человека. Еще раз делается шаг назад и пред­полагается, вопреки, казалось бы, уже доказанному, что существующее все-таки постижимо. Из последнего допущения выводится, что постижи­мое невыразимо и необъяснимо для другого.

Какие именно проблемы хотел поставить Горгий? Однозначно на этот вопрос ответить невозможно. Очевидно, что рассуждение Горгия сталки­вает нас с противоречиями и побуждает искать выход, чтобы избавиться от них. Но в чем именно заключаются проблемы, на которые указывают проти­воречия, и в каком направлении искать их решение, совершенно неясно.

О древнекитайском философе Хуэй Ши известно, что он был очень разносторонен, а его писания могли заполнить пять повозок. Он, в част­ности, утверждал: «То, что не обладает толщиной, не может быть накоп­лено, и все же его громада может простираться на тысячу ли. — Небо и земля одинаково низки; горы и болота одинаково ровны. — Солнце, только что достигшее зенита, уже находится в закате; вещь, только что родившаяся, уже умирает. — Южная сторона света не имеет предела и в то же время имеет предел. — Только сегодня отправившись в Юэ, туда я давно уже прибыл».

Сам Хуэй Ши считал свои изречения великими и раскрывающими самый потаенный смысл мира. Критики находили его учение противоре­чивым и путаным и заявляли, что «его пристрастные слова никогда не попадали в цель». В древнем философском трактате «Чжуан-цзы», в ча­стности, говорится: «Как жаль, что свой талант Хуэй Ши бездумно рас­трачивал на ненужное и не достиг истоков истины! Он гнался за внешней стороной тьмы вещей и не мог вернуться к их сокровенному началу. Это как бы пытаться убежать от эха, издавая звуки, или пытаться умчаться от собственной тени. Разве это не печально?»

Сказано прекрасно, но вряд ли справедливо.

Впечатление путаницы и противоречивости в изречениях Хуэй Ши связано с внешней стороной дела, с тем, что он ставит свои проблемы в парадоксальной форме. В чем можно было бы его упрекнуть, так это в том, что выдвижение проблемы он почему-то считает и ее решением.

Как и в случае многих других парадоксов, трудно сказать с определенно­стью, какие именно конкретные вопросы стоят за афоризмами Хуэй Ши.

На какое интеллектуальное затруднение намекает, его заявление, что человек, только что отправившийся куда-то, давно туда уже прибыл? Можно истолковать это так, что, прежде чем отбыть в определенное мес­то, надо представить себе это место и тем самым как бы побывать там. Человек, направляющийся, подобно Хуэй Ши, в Юэ, постоянно держит в уме этот пункт и в течение всего времени продвижения к нему как бы пребывает в нем. Но если человек, только отправившийся в Юэ, давно уже там, то зачем ему вообще отправляться туда? Не вполне ясно, какая именно трудность скрывается за этим простым изречением.

Какие выводы для логики следует из существования парадоксов?

Прежде всего, наличие большого числа парадоксов говорит о силе логики как науки, а не о ее слабости, как это может показаться. Обнару­жение парадоксов не случайно совпало с периодом наиболее интенсивно­го развития современной логики и наибольших ее успехов.

Первые парадоксы были открыты еще до возникновения логики как особой науки. Многие парадоксы были обнаружены в средние века. Позд­нее они оказались, однако, забытыми и были вновь открыты уже в про­шлом веке.

Только современная логика извлекла из забвения саму проблему па­радоксов, открыла или переоткрыла большинство конкретных логических парадоксов. Она показала далее, что способы мышления, традиционно исследовавшиеся логикой, совершенно недостаточны для устранения па­радоксов, и указала принципиально новые приемы обращения с ними.

Парадоксы ставят важный вопрос: в чем, собственно, подводят нас некоторые обычные методы образования понятий и методы рассуждений? Ведь они представлялись совершенно естественными и убедительными, пока не выявилось, что они парадоксальны.

Парадоксами подрывается вера в то, что привычные приемы теорети­ческого мышления сами по себе и без всякого особого контроля за ними обеспечивают надежное продвижение к истине.

Требуя радикальных изменений в излишне доверчивом подходе к теоретизированию, парадоксы представляют собой резкую критику ло­гики в ее наивной, интуитивной форме. Они играют роль фактора, конт­ролирующего и ставящего ограничения на пути конструирования дедук­тивных систем логики. И эту их роль, можно сравнить с ролью экспери­мента, проверяющего правильность гипотез в таких науках, как физика и химия, и заставляющего вносить в эти гипотезы изменения.

Парадокс в теории говорит о несовместимости допущений, лежащих в ее основе. Он выступает как своевременно обнаруженный симптом бо­лезни, без которого ее можно было бы и проглядеть.

Разумеется, болезнь проявляется многообразно, и ее в конце концов удается раскрыть и без таких острых симптомов, как парадоксы. Скажем, основания теории множеств были бы проанализированы и уточнены, если бы даже никакие парадоксы в этой области не были обнаружены. Но не было бы той резкости и неотложности, с какой поставили проблему пе­ресмотра теории множеств обнаруженные в ней парадоксы.

Парадоксам посвящена обширная литература, предложено большое число их объяснений. Но ни одно из этих объяснений не является обще­признанным, и полного согласия в вопросе о происхождении парадоксов и способах избавления от них нет.

Следует обратить внимание на одно важное различие. Устранение парадоксов и их разрешение — это вовсе не одно и то же. Устранить парадокс из некоторой теории — значит перестроить ее так, чтобы пара­доксальное утверждение оказалось в ней недоказуемым. Каждый пара­докс опирается на большое число определений и допущений. Его вывод в теории представляет собой некоторую цепочку рассуждений. Формаль­но говоря, можно подвергнуть сомнению любое ее звено, исключить его и тем самым разорвать цепочку и устранить парадокс. Во многих работах так и поступают и этим ограничиваются.

Но это еще не разрешение парадокса. Мало найти способ, как его исклю­чить, надо убедительно обосновать предлагаемое решение. Само сомнение в каком-то шаге, ведущем к парадоксу, должно быть хорошо обосновано.

Прежде всего, решение об отказе от каких-то логических средств, используемых при выводе парадоксального утверждения, должно быть увязано с нашими общими соображениями относительно природы логи­ческого доказательства и другими логическими интуициями. Если этого нет, устранение парадокса оказывается лишенным твердых и устойчивых оснований и вырождается в техническую по преимуществу задачу.

Кроме того, отказ от какого-то допущения, даже если он и обеспечи­вает устранение некоторого конкретного парадокса, вовсе не гарантирует автоматически устранения всех парадоксов. Это говорит о том, что за парадоксами не следует «охотиться» поодиночке. Исключение одного из них всегда должно быть настолько обосновано, чтобы появилась опре­деленная гарантия, что этим же шагом будут устранены и другие пара­доксы.

И наконец, непродуманный и неосторожный отказ от слишком мно­гих или слишком сильных допущений может привести просто к тому, что получится хотя и не содержащая парадоксов, но существенно более сла­бая теория, имеющая только частный интерес.

Г. Фреге, являющийся одним из основателей современной логики, имел очень скверный характер. Кроме того, он безоговорочно и даже жестоко критиковал современников. Возможно, поэтому его вклад в ло­гику и обоснование математики долго не получал признания. И вот когда оно начало приходить, молодой английский логик Рассел написал ему, что в системе, опубликованной в первом томе его наиболее важной кни­ги «Основные законы арифметики», возникает противоречие. Второй том этой книги был уже в печати, но Фреге добавил к нему специальное приложение, в котором изложил это противоречие (парадокс Рассела) и признал, что он не способен его устранить.

Последствия были для Фреге трагическими. Ему было тогда всего пятьдесят пять лет, но после испытанного потрясения он не опублико­вал больше ни одной значительной работы по логике, хотя прожил еще более двадцати лет. Он не откликнулся даже на оживленную дискуссию, вызванную парадоксом Рассела, и никак не прореагировал на многочис­ленные предлагавшиеся решения этого парадокса.

Впечатление, произведенное на математиков и логиков только что открытыми парадоксами, хорошо выразил выдающийся математик Д. Гильберт: «... Состояние, в котором мы находимся сейчас в отношении парадоксов, на продолжительное время невыносимо. Подумайте: в ма­тематике — этом образце достоверности и истинности — образование понятий и ход умозаключений, как их всякий изучает, преподает и приме­няет, приводит к нелепости. Где же искать надежность и истинность, если даже само математическое мышление дает осечку?»

Фреге был типичным представителем логики конца XIX в., сво­бодной от каких бы то ни было парадоксов, логики, уверенной в своих возможностях и претендующей на то, чтобы быть критерием строгости даже для математики. Парадоксы показали, что «абсолютная строгость», достигнутая якобы логикой, была не более чем иллюзией. Они бесспорно показали, что логика — в том интуитивном виде, какой она тогда име­ла, — нуждается в глубоком пересмотре.

Прошел целый век с тех пор, как началось оживленное обсуждение парадоксов. Предпринятая ревизия логики так и не привела, однако, к недвусмысленному их разрешению.

И вместе с тем такое состояние вряд ли кому кажется теперь невы­носимым. С течением времени отношение к парадоксам стало более спо­койным и даже более терпимым, чем в момент их обнаружения.

Дело не только в том, что парадоксы сделались чем-то хотя и непри­ятным, но тем не менее привычным. И, разумеется, не в том, что с ними смирились. Они все еще остаются в центре внимания логиков, поиски их решений активно продолжаются.

Ситуация изменилась прежде всего в том отношении, что парадоксы оказались, так сказать, локализованными. Они обрели свое определен­ное, хотя и неспокойное место в широком спектре логических исследо­ваний.

Стало ясно, что абсолютная строгость, какой она рисовалась в конце прошлого века и даже иногда в начале нынешнего, — это в принципе недостижимый идеал.

Было осознано также, что нет одной-единственной, стоящей особ­няком проблемы парадоксов. Проблемы, связанные с ними, относятся к разным типам и затрагивают, в сущности, все основные разделы логи­ки. Обнаружение парадокса заставляет глубже проанализировать наши логические интуиции и заняться систематической переработкой основ науки логики. При этом стремление избежать парадоксов не является ни единственной, ни даже, пожалуй, главной задачей. Они являются хотя и важным, но только поводом для размышления над центральными те­мами логики. Продолжая сравнение парадоксов с особо отчетливыми симп­томами болезни, можно сказать, что стремление немедленно исключить парадоксы было бы подобно желанию снять такие симптомы, не особенно заботясь о самой болезни. Требуется не просто разрешение парадоксов, необходимо их объяснение, углубляющее наши представления о логиче­ских закономерностях мышления.

Размышление над парадоксами является, без сомнения, одним из лучших испытаний наших логических способностей и одним из наиболее эффективных средств их тренировки.

Знакомство с парадоксами, проникновение в суть стоящих за ними проблем — непростое дело. Оно требует максимальной сосредоточенно­сти и напряженного вдумывания в несколько, казалось бы, простых ут­верждений. Только при этом условии парадокс может быть понят. Трудно претендовать на изобретение новых решений логических парадоксов, но уже ознакомление с предлагавшимися их решениями является хорошей школой практической логики.


© 2011-2024 Контрольные работы по математике и другим предметам!