06. Анализ решения (модели) на чувствительность

Модель линейного программирования является как бы «моментальным снимком» реальной ситуации, когда параметры модели (коэффициенты целевой функции и неравенств ограничений) предполагаются неизменными. Естественно изучить влияние изменения параметров модели на полученное оптимальное решение задачи ЛП. Такое исследование называется Анализом на чувствительность. В этом разделе анализ чувствительности основывается на графическом решении задачи ЛП.

Пример 3.3.

Компания производит краску для внутренних и наружных работ из сырья двух типов: М1 и М2.

Необходимая информация представлена в следующей таблице:

Расход сырья

На 1 тонну краски

Максимально
возможный

Ежедневный
расход сырья

Для наружных работ

Для внутренних работ

Сырье М1

6

4

24

Сырье М2

1

2

6

Доход на тонну краски (тыс. дол.)

5

4

Отдел маркетинга компании ограничил ежедневное производство краски для внутренних работ до 2 т, а кроме того этот показатель не должен превышать более чем на тонну показатель выпуска краски для внешних работ.

Цель компании:

Определить оптимальное соотношение между видами выпускаемой продукции для максимизации общего ежедневного дохода.

Составленная математическая модель задачи выглядит следующим образом:

Максимизировать Z(x) = 5X1 + 4X2

При выполнении ограничений

6Х1 + 4Х2 ≤ 24

Х1 + 2Х2 ≤ 6

Х2 ≤ 2

X2 –X1 ≤ 1

Х1 ≥ 0

Х2 ≥ 0

В результате применения графического метода решения ЗЛП, рассмотренного в параграфе 3.2, получен график (рис. 3.6).

Рис. 3.6. Решение задачи

Решением задачи является точка с координатами: Х1 = 3;Х2 = 1,5. Целевая функция при таком решении принимает значение Z = 21 тыс. дол.

Проведем для данной задачи анализ чувствительности. Рассмотрим два случая:

1) изменение коэффициентов целевой функции;

2) изменение значений констант в правой части неравенств-ограничений.

1. Изменение коэффициентов целевой функции. В общем виде целевую функцию задачи ЛП можно записать следующим образом:

Максимизировать или минимизировать Z(X) = С1 X1 + C2 X2

Изменение значений коэффициентов С1 и С2 приводит к изменению угла наклона прямой Z. Графический способ решения показывает, что это может привести к изменению оптимального решения: оно будет достигаться в другой угловой точке пространства решений. Вместе с тем, очевидно, существуют интервалы изменения коэффициентов С1 и С2, когда текущее оптимальное решение сохраняется. Задача анализа чувствительности и состоит в получении такой информации. В частности, представляет интерес определение интервала оптимальности для отношения С1 /С2 (или, что то же самое, для С2 /С1); если значение отношения С1 /С2 не выходит за пределы этого интервала, то оптимальное решение в данной модели сохраняется неизменным.

На рис. 3.6 видно, что функция Z(x) = 5X1 + 4X2 достигает максимального значения в угловой точке С. При изменении коэффициентов целевой функции Z(x) = С1 X1 + C2 X2 точка С останется точкой оптимального решения до тех пор, пока угол наклона линии Z будет лежать между углами наклона двух прямых, пересечением которых является точка С. Этими прямыми являются 6Х1 + 4Х2 ≤ 24 (ограничение на сырье М1) и Х1 + 2Х2 ≤ 6 (ограничение на сырье М2). Алгебраически это можно записать следующим образом:

Или

.

В первой системе неравенств условие означает, что прямая, соответствующая целевой функции, не может быть горизонтальной. Аналогичное условие в следующей системе неравенств означает, что эта же прямая не может быть вертикальной. Из рис. 3.7 видно, что интервал оптимальности данной задачи (он определяется двумя пересекающимися в точке С прямыми) не разрешает целевой функции быть ни горизонтальной, ни вертикальной. Таким образом, получено две системы неравенств, определяющие интервал оптимальности в данной задаче.

Рис. 3.7. Интервал оптимальности

Итак, если коэффициенты С1 и С2 удовлетворяют приведенным выше неравенствам, оптимальное решение по-прежнему будет достигаться в точке С. Отметим, если прямая Z(x) = С1 X1 + C2 X2 совпадет с прямой Х1 + 2Х2 ≤ 6, то оптимальным решением будет любая точка отрезка CD. Аналогично, если прямая, соответствующая целевой функции, совпадет с прямой 6Х1 + 4Х2 = 24, тогда любая точка отрезка ВС будет оптимальным решением. Однако очевидно, что в обоих случаях точка С остается точкой оптимального решения.

Приведенные выше неравенства можно использовать при определении интервала оптимальности для какого-либо одного коэффициента целевой функции, если предположить, что другой коэффициент остается неизменным. Например, зафиксируем значение коэффициента С2 (пусть С2 = 4), тогда интервал оптимальности для коэффициента С1 получаем из неравенств путем подстановки туда значения С2 = 4. После выполнения элементарных арифметических операций получаем неравенства для коэффициента С1: 2 ≤ С1 ≤ 6.

Это означает, что при фиксированной цене на краску для внутренних работ цена на краску для наружных работ может меняться в интервале от 2 тыс. дол. за тонну до 6 тыс. дол. за тонну, при том, что оптимальное соотношение (решение) останется неизменным.

Аналогично, если зафиксировать значение коэффициента С1 (пусть С1 = 5), тогда из неравенства получаем интервал оптимальности для коэффициента С2: .

2. Изменение значений констант в правой части неравенств-ограничений. Стоимость ресурсов. Во многих моделях линейного программирования ограничения трактуются как условия ограниченности ресурсов. В таких ограничениях правая часть неравенств является верхней границей количества доступных ресурсов. Рассмотрим на примере чувствительность оптимального решения к изменению ограничений, накладываемых на ресурсы. Такой анализ задачи ЛП предлагает простую меру чувствительности решения, называемую Стоимостью единицы ресурса; при изменении количества доступных ресурсов (на единицу) значение целевой функции в оптимальном решении изменится на стоимость единицы ресурса.

В данной примере первые два неравенства представляют собой ограничения на использование сырья М1 и М2 соответственно. Определим стоимость единиц этих ресурсов.

В данной задаче оптимальное решение достигается в точке С, являющейся точкой пересечения прямых, соответствующих ограничениям на сырье М1 и М2. При изменении уровня доступности материала М1 (увеличение или уменьшение текущего уровня, равного 24 т) точка С оптимального решения «плывет» вдоль отрезка DG (рис. 3.8).

Рис. 3.8

Любое изменение уровня доступности материала М1, приводящее к выходу точки пересечения С из этого отрезка, ведет к неосуществимости оптимального решения в точке С. Поэтому можно сказать, что концевые точки D = (2,2) и G = (6,0) отрезка DG определяют Интервал осуществимости для ресурса М1. Количество сырья М1, соответствующего точке D = (2,2), равно 6Х1 + 4Х2 = 20 т. Аналогично, количество сырья, соответствующего точке G = (6,0), равно 36 т. Таким образом, интервал осуществимости для ресурса М1 составляет 20 ≤ М1 ≤ 36. Если определить М1 как М1 = 24 + D1, где D1 – отклонение количества материала М1 от текущего уровня в 24 т, тогда последние неравенства можно переписать как 20 ≤ 24 + D1 ≤ 36 или -4 ≤ D1 ≤ 12. Это означает, что текущий уровень ресурса М1 может быть уменьшен не более чем на 4 т и увеличен не более чем на 12 т. В этом случае структура оптимального решения не изменится.

Вычислим стоимость единицы материала М1. При изменении количества сырья М1 от 20 до 36 тонн, значения целевой функции Z будут соответствовать положению точки С на отрезке DG. Обозначив через y1 стоимость единицы ресурса М1, получим следующую формулу:

.

Если точка С совпадает с точкой D = (2,2), то Z = 5 ´ 2 + 4 ´ 2 = 18 (тыс. дол.), если же точка С совпадает с точкой G = (6,0), тогда Z = 5´6 + 4´0 = 30 (тыс. дол.). Отсюда следует, что

(тыс. дол. на тонну материала М1).

Этот результат показывает, что изменение количества ресурса М1 на одну тонну приводит к изменению в оптимальном решении значения целевой функции на 750 дол.

Рассмотрим ресурс М2. На рис. 3.9 видно, что интервал осуществимости для ресурса М2 определяется концевыми точками В и Н отрезка ВН, где В = (4,0) и Н = (8/3,2).

Рис. 3.9

Точка Н находится на пересечении прямых ЕD и ВС. Находим, что количество сырья М2, соответствующего точке В, равно Х1 + 2Х2 = 4 + 2 ´ 0 = 4т, а в точке Н – 20/3 т. Значение целевой функции в точке В равно Z = 5 ´ 4 + 4 ´ 0 = 20 тыс. дол., а в точке Н: Z = 5 ´ ´ 8/3 + 4 ´ 2 = 64/3 тыс. дол. Отсюда следует, что количество сырья М2 может изменяться от 4 до 20/3 тонн, а стоимость единицы ресурса М2, обозначенная как y2, равна (тысяч долларов на тонну материала М2).

© 2011-2024 Контрольные работы по математике и другим предметам!