1.3.4. Примеры решения задач по теме «Обратная матрица»
Задача 1.
Найти обратную матрицу для матрицы
И проверить выполнение условий А А-1 = А-1А = Е.
Указание
Убедитесь, что матрица А – невырожденная, и примените способ вычисления обратной матрицы.
Убедимся, что матрица А – невырожденная. ΔА = 1·4 - 2·(-1) ≠ 0, следовательно, А-1 существует.
Вычислим алгебраические дополнения к элементам А:
Применим способ вычисления обратной матрицы:
.
Не забудьте, что обратная матрица образована из алгебраических дополнений к элементам Транспонированной матрицы! |
Найдем произведения А А-1 и А-1А:
Таким образом, найденная матрица А-1 отвечает определению обратной матрицы.
Ответ: .
Задача 2.
Найти обратную матрицу для матрицы
.
Указание
Убедитесь, что матрица А – невырожденная, и примените способ вычисления обратной матрицы.
Следовательно, матрица А невырожденная, и обратная матрица существует.
Вычислим алгебраические дополнения к элементам матрицы А:
Обратная матрица имеет вид:
Ответ: .
Задача 3.
Найти обратную матрицу для матрицы
.
Указание
Убедитесь, что матрица А – невырожденная, и примените способ вычисления обратной матрицы.
Решение
Вычислим определитель матрицы А разложением по первому столбцу:
.
Следовательно, обратная матрица для матрицы А существует.
Найдем алгебраические дополнения к элементам матрицы А:
Значит,
.
Ответ: .
Задача 4.
Найти обратную матрицу для матрицы
.
Указание
Убедитесь, что матрица А – невырожденная, и примените способ вычисления обратной матрицы.
Решение
.
Ответ:
Задача 5.
При каких X, Y, Z матрица
Является обратной к матрице
Указание
Необходимым условием того, что В = А-1, является требование АВ = Е.
Решение
Проверим невырожденность матрицы А:
Необходимым условием того, что В = А-1, является требование АВ = Е.
Найдем АВ:
Для того, чтобы выполнялось условие АВ = Е, X, Y, Z должны быть решением системы уравнений
Проверим, будет ли равно единичной матрице произведение ВА:
Значит, при найденных значениях X, Y, Z В = А-1.
Ответ: X = -3, Y = -3, Z = 4.
< Предыдущая | Следующая > |
---|