06. Аксиоматическое построение теории вероятностей
В случае с геометрическими вероятностями пространство элементарных исходов не конечно и даже не счетно, а значит невозможно применять классическую формулу для подсчета вероятностей. Проблема определения вероятностей, когда классическая формула неприменима, была решена Андреем Николаевичем Колмогоровым, который в 1929 году сформулировал аксиоматику теории вероятностей. Работы Колмогорова в области теории вероятностей считаются самым крупным вкладом в математическую науку в ХХ столетии. В чем эта аксиоматика состоит?
Пусть пространство элементарных событий есть произвольное множество, и пусть - некоторая система его подмножеств.
называется Алгеброй, если
1) ;
2) для любых множеств B,C принадлежащих , так же принадлежит .
3) если , то и .
Из этих свойств также следует, что для любых множеств , принадлежащих , их пересечение , (т. к.).
Таким образом, алгебра – это класс множеств, замкнутый относительно операций дополнения, объединения и пересечения.
Замечание. Алгебра может быть замкнута не только относительно конечного числа этих операций, но также их счетного числа. В этом случае она называется - алгеброй.
Если задано множество W и какая-нибудь алгебра его подмножеств , то говорят, что задано Измеримое пространство (W, ).
Пример 7. В примере 4 предыдущего параграфа пространство W состоит из точек отрезка [А, В]. Совокупность множеств { W, , [C, В], [А, C)} образует алгебру .¨
Для того чтобы формализовать какую-либо вероятностную задачу, надо соответствующему эксперименту приписать измеримое пространство (W, ).
W означает множество элементарных исходов эксперимента, алгебра выделяет класс событий. Все остальные подмножества W, которые не вошли в алгебру , cобытиями в данном эксперименте не являются.
Пусть (W, ) - измеримое пространство. Вероятностью на измеримом пространстве (W, ) называется числовая функция Р, определенная на множествах из и удовлетворяющая трем аксиомам:
1) для любого множества:;
2) ;
3) для любых двух событий В и С, принадлежащих алгебре и таких, что : .
Замечание. Если Является - алгеброй, третье утверждение должно выполняться не только для конечного, но также для любого счетного объединения ее подмножеств. В этом случае третья аксиома называется аксиомой счетной аддитивности.
Тройка (W, , называется Вероятностным пространством.
Пример 8. В примере 7 вероятность любого события из алгебры положим равной длине соответствующего промежутка, деленной на длину отрезка [А,В]. Все аксиомы вероятности будут выполнены.¨
< Предыдущая | Следующая > |
---|