95. Комплексные числа
Определение. Комплексным числом Z Называется выражение , где A И B – действительные числа, I – мнимая единица, которая определяется соотношением:
При этом число A называется Действительной частью числа Z (A = Re Z), а B- Мнимой частью (B = Im Z).
Если A =Re Z =0, То число Z будет чисто мнимым, если B = Im Z = 0, то число Z будет действительным.
Определение. Числа и Называются Комплексно – сопряженными.
Определение. Два комплексных числа и называются равными, если соответственно равны их действительные и мнимые части:
Определение. Комплексное число равно нулю, если соответственно равны нулю действительная и мнимая части.
Понятие комплексного числа имеет геометрическое истолкование. Множество комплексных чисел является расширением множества действительных чисел за счет включения множества мнимых чисел. Комплексные числа включают в себя все множества чисел, которые изучались ранее. Так натуральные, целые, рациональные, иррациональные, действительные числа являются, вообще говоря, частными случаями комплексных чисел.
Если любое действительное число может быть геометрически представлено в виде точки на числовой прямой, то комплексное число представляется точкой на плоскости, координатами которой будут соответственно действительная и мнимая части комплексного числа. При этом горизонтальная ось будет являться действительной числовой осью, а вертикальная - мнимой осью.
у
A(a, b)
r b
j
0 a x
Таким образом, на оси ОХ располагаются действительные числа, а на оси ОY – чисто мнимые.
С помощью подобного геометрического представления можно представлять числа в так называемой тригонометрической форме.
< Предыдущая | Следующая > |
---|