81. Связь натурального и десятичного логарифмов

Пусть х = 10у, тогда lnx = ln10y, следовательно lnx = yln10

у = , где М = 1/ln10 » 0,43429…- модуль перехода.

Предел функции в точке.

y f(x)

A + e

A

A - e

0 a - D a a + D x

Пусть функция f(x) определена в некоторой окрестности точки х = а (т. е. в самой точке х = а функция может быть и не определена)

Определение. Число А называется Пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что

0 < ïx - aï < D

Верно неравенство ïf(x) - Aï< e.

То же определение может быть записано в другом виде:

Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e.

Запись предела функции в точке:

Определение. Если f(x) ® A1 при х ® а только при x < a, то - называется Пределом функции f(x) в точке х = а Слева, а если f(x) ® A2 при х ® а только при x > a, то называется Пределом функции f(x) в точке х = а Справа.

у

f(x)

А2

А1

0 a x

Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки.

Пределы А1 и А2 называются также Односторонними пределами функции f(x) в точке х = а. Также говорят, что А – Конечный предел функции f(x).

© 2011-2024 Контрольные работы по математике и другим предметам!