07. Обратная матрица
Определим операцию деления матриц как операцию, обратную умножению.
Определение. Если существуют квадратные матрицы Х и А, удовлетворяющие условию:
XA = AX = E,
Где Е - единичная матрица того же самого порядка, то матрица Х называется Обратной К матрице А и обозначается А-1.
Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.
Рассмотрим общий подход к нахождению обратной матрицы.
Исходя из определения произведения матриц, можно записать:
AX = E Þ , i=(1,n), j=(1,n),
Eij = 0, i ¹ j,
Eij = 1, i = j.
Таким образом, получаем систему уравнений:
,
Решив эту систему, находим элементы матрицы Х.
Пример. Дана матрица А = , найти А-1.
Таким образом, А-1=.
Однако, такой способ не удобен при нахождении обратных матриц больших порядков, поэтому обычно применяют следующую формулу:
,
Где Мji- Дополнительный минор элемента Аji матрицы А.
Пример. Дана матрица А = , найти А-1.
Det A = 4 - 6 = -2.
M11=4; M12= 3; M21= 2; M22=1
x11= -2; x12= 1; x21= 3/2; x22= -1/2
Таким образом, А-1=.
< Предыдущая | Следующая > |
---|