36. Проверка статистических гипотез
Наряду с оценкой параметров распределения по выборочным данным большой интерес представляет вид (закон) распределения неизвестный на практике. Такие задачи решаются методами статических гипотез.
Относительно неизвестного теоретического распределения формируется некоторое предположение, которое формируется в виде гипотез.
Например, теоретическое распределение подчиняется нормальному, экспоненциальному закону.
При проверки гипотез используется принцип значимости основывающийся на принципе практической невозможности.
Согласно принципу практической невозможности события с очень малыми вероятностями в практических приложениях считаются невозможными.
Максимум таких вероятностей определяет уровень значимости α, который задаётся.
В свою очередь согласно принципу значимости отвергается случайность появления практически невозможного события.
Поскольку теоретическое распределение задано гипотезой, то легко рассчитать вероятность появления некоторого события при проведении испытаний или взятии выборки и пусть такая расчётная вероятность не превышает ε, т. е. событие является практически невозможным.
Если же такое событие происходит, то возникает противоречие между выдвинутой гипотезой и выборкой. Гипотезу следует отвергнуть в этом и заключается содержание принципа значимости.
Проверяемая гипотеза называется нулевой или основной Н0.
Если гипотеза отвергается, то принимается противопоставляемая ей гипотеза Н1, которая называется конкурирующей ил альтернативной.
Про проверки гипотезы Н0 возможны ошибки.
Можно отвергнуть гипотезу Н0 в условиях когда она верна и совершить ошибку I-го рода и можно принять гипотезу, когда она не верна и совершить ошибку II-го рода.
Решение поставленной задачи по сути дела состоит в разделении всего множества выборочных данных на 2-а не пересекающихся подмножества О и W. Таких, что решение принимается в пользу гипотезы Н0, если выборка принадлежит области О и в пользу гипотезы Н1, если выборка принадлежит подмножеству W. Область W называется критической областью выборочного пространства. Здесь гипотеза Н0 отвергается, а область О является областью допустимых значений. Здесь гипотеза Н0 принимается.
< Предыдущая | Следующая > |
---|