15. Имитационное моделирование

Цели

Имитация — это попытка дублировать особенности, внешний вид и характеристики реальной системы. Идея имитации реали­зуется следующим образом:

1) математическое описание реальной ситуации;

2) изучение ее свойств и особенностей;

3) формирование выводов и принятие решений, связанных с воздействием на эту ситуацию и основанных на результатах имитации.

Важно, что реальная система не подвергается воздействию до тех пор, пока преимущества или недостатки тех или иных управ­ленческих решений не будут оценены с помощью модели этой системы.

После того как вы выполните задания, предлагаемые в этой главе, вы. будете уметь использовать для экономического ана­лиза:

• имитацию;

• интервал случайных чисел;

• метод Монте-Карло;

• таблицу случайных чисел.

Модели

Метод Монте-Карло (метод статистических испытаний) состо­ит из четырех этапов:

1. Построение математической модели системы, описывающей зависимость моделируемых характеристик от значений стохасти­ческих переменных.

2. Установление распределения вероятностей для стохастичес­ких переменных.

3. Установление интервала случайных чисел для каждой сто­хастической переменной и генерация случайных чисел.

4. Имитация поведения системы путем проведения многих ис­пытаний и получение оценки моделируемой характеристики си­стемы при фиксированных значениях параметров управления. Оценка точности результата.

Описание этапов:

Первый этап. Стохастическая имитационная модель (ИМ) не­которой реальной системы может быть представлена как динами­ческая система, которая под воздействием внешних случайных входных сигналов (входных переменных) изменяет свое состояние (случайные переменные состояния), что в свою очередь приводит к изменению выходных сигналов (выходных переменных):

Где F, R — вектор-функции;

II, UI, SI — векторы соответственно входных, выходных пере­менных и переменных состояния системы в так­товый момент моделирования I.

Имитационная модель — это экспериментальная модель систе­мы, в которой искусственно воспроизводятся случайности, име­ющие место в реальной системе. Она представляет собой совокуп­ность математических соотношений между входными, выходными переменными и переменными состояния в сочетании с алгорит­мической реализацией некоторых зависимостей.

Существует два подхода в имитационном моделировании ди­намических процессов.

Первый заключается в том, что весь период моделирования разбивается на равные промежутки времени (такты моделирова­ния) и анализ состояния системы, а также значений выходных переменных производится через одинаковые промежутки време­ни. При таком подходе возникает проблема выбора «правильной» продолжительности такта. Кроме того, не исключается появление тактов, в которых состояние системы по сравнению с предыдущим не изменилось.

При Втором подходе величина такта моделирования не фик­сируется, моделирование в этом случае происходит в момент на­ступления одного из «существенных» событий. Например, при моделировании производственного процесса на предприятии та­кими событиями могут быть освобождение или начало загрузки станка, поступление на обработку детали, невыход на работу ста­ночника, исчерпание запаса необходимых комплектующих дета­лей на складе и др. Именно второй подход чаще всего использу­ется на практике и поддерживается современными языками мо­делирования.

Второй этап. Случайные величины, используемые в ИМ, мо­гут быть дискретными или непрерывными. В первом случае не­обходимо знать Их распределения, во втором — Плотности распре­делений. Эти зависимости могут быть известны из теории, опре­делены в результате специальных исследований либо заданы в качестве гипотезы. Точность модели (при прочих равных услови­ях) зависит от того, насколько точно заданы указанные распреде­ления (плотности распределений).

Третий этап. Моделирование случайных величин при компью­терных имитационных экспериментах производится с помощью датчика псевдослучайных чисел, предусмотренного в любом со­временном языке программирования. Обычно это датчик случай­ных чисел с равномерным распределением на интервале [0, 1]. Если известны вероятности наступления событий, то, используя такой датчик, можно отвечать на вопросы: «Какое из N возмож­ных событий произошло?» или «Какое значение приняла случай­ная величина?»

Предположим, что в ИМ используется случайная величина X, Принимающая дискретные значения Х1, х2,..., ХN с вероятностями соответственно P1, P2,..., PN ( ). Получение некоторой реализации этой переменной в модели производится следующим образом.

Строится функция распределения случайной величины X. Ука­занная функция определяется посредством равенства F(X) = åPk, в котором суммирование распространяется на все индексы, для которых ХK < X. С помощью датчика случайных чисел получают случайное число И из отрезка [0, 1].

Из равномерности распределения получаемых случайных чи­сел следует, что вероятность получения случайного числа из про­извольного интервала, включенного в [0, 1], равна длине этого интервала. Поэтому вероятность реализации Х = хK равна веро­ятности попадания полученного от датчика случайного числа И В произвольный интервал длиной Pk на отрезке [0, 1]. Можно, та­ким образом, утверждать, что если очередное число И датчика удовлетворяет неравенствам 0 < И £ р1, то имеет место реализа­ция Х = х1, в случае P1 < и £ p1 + Р2 реализация Х = х2 и т. д. В общем случае для K = 2, ..., N: если < и £ , то Х = хK.

Заметим, что границы указанных неравенств совпадают со зна­чениями построенной выше функции распределения F(X).

Удобнее, однако, иметь дело не с дробными значениями гра­ниц интервалов, в которые попадает случайное число И, а с их Целочисленными значениями, тем более, что с помощью датчи­ков случайных чисел можно генерировать числа из любого диа­пазона. Чтобы получить целые значения границ интервалов, до­статочно умножить все Pk на 10D, где D — целое, минимальное зна­чение которого равно максимальной точности (максимальному числу знаков после десятичной точки) чисел Pk, K = 1,..., N. На­пример, если {РK} = {0,3; 0,153; 0,5; 0,047}, то минимальное зна­чение D равно 3 (все РK Нужно умножить на 1000). Таким образом, 10D определяет длину интервала значений рассматриваемой слу­чайной величины в ИМ.

Четвертый этап. Точность статистических оценок параметров реальной системы зависит от числа наблюдений (объема выбор­ки). Погрешности в оценках обусловлены как статистическим характером самой модели, так и влиянием начальных данных (на­чального состояния имитационной системы), а также возможной автокорреляцией последовательных значений некоторого парамет­ра в процессе моделирования. Очевидно, что с увеличением чис­ла испытаний точность моделирования должна возрастать. Ввиду того что увеличение объема выборки связано с ростом затрат на моделирование, важно уметь определять минимальное число ис­пытаний, необходимое для достижения заданной точности оцен­ки с заданной вероятностью.

Широкое распространение получили два метода статистичес­ких испытаний. Один из них предполагает проведение достаточ­но большого числа Т последовательных наблюдений в течение одного прогона модели (одного сеанса имитирования).

Другой метод заключается в реализации Т независимых про­гонов модели, т. е. в M-кратном повторении одного и того же цикла имитирования. При этом, если мы хотим получить в сумме Т Наблюдений, в течение каждого прогона можно делать по Т/т (допустим, что это число целое) наблюдений. Оба метода дают примерно одинаковый результат.

Пусть значения УT (T = 1,..., Т) представляют собой результа­ты Т последовательных измерений значений случайной величи­ны Y во время одного и того же сеанса имитации. Среднее по вре­мени значение у определяется выражением

Обозначим через m математическое ожидание случайной вели­чины У. Тогда для достаточно большого T получаем

Оценка дисперсии (если временной ряд не является авто­коррелированным) имеет вид

Где D(У) — дисперсия случайной величины У.

Для оценки качества результатов, полученных методом Мон­те-Карло при неизвестной дисперсии наблюдаемой случайной величины, предположим, что Z — характеристика, которая долж­на быть определена (вероятность события, математическое ожи­дание, дисперсия и т. п.), a x ее значение, уточняемое по мере накопления данных, остающееся случайным вследствие ограни­ченности числа T проведенных наблюдений. В этих условиях мож­но говорить о вероятности P(|Z – x| < e) по отношению к инте­ресующей нас характеристике. Величина |Z – e| представляет со­бой погрешность в оценке Z, a e — некоторый допустимый ее предел.

Из неравенства Чебышёва следует

Из этого неравенства следует

Откуда при заданных Р и e и при известной зависимости DE (Т) можно найти предельно необходимое Т.

Известно, что истинная дисперсия выборочного распределения для расчетного среднего обратно пропорциональна суммарному числу наблюдений Т, т. е.

Где D не зависит от Т.

В начале имитационного процесса требуемое число наблюде­ний определить обычно не удается, поскольку D неизвестно. По­этому, как правило, эксперимент проводят в два этапа.

На первом этапе число испытаний выбирается относительно небольшим, в результате определяется величина D. После этого можно уже определить, сколько дополнительных наблюдений необходимо, чтобы была достигнута требуемая точность.

Предельное число наблюдений Т0 определяется формулой T0 = d/[(1 – P)e2].

При любом числе наблюдений больше Т0 обеспечивается тре­буемая точность.

© 2011-2024 Контрольные работы по математике и другим предметам!