08. Аналитические функции. Условия Коши-Римана. Дифференцирование ФКП. Аналитичность функции
Определение 1. Функция называется дифференцируемой в точке , если существует предел
. (3.1)
Этот предел называется производной функции в точке Z. Для нее употребляются обозначения .
Теорема. Для того, чтобы функция была дифференцируемой в точке Z, необходимо и достаточно, чтобы функции , были дифференцируемы в этой точке и выполнялись условия Коши-Римана (говорят также Даламбера-Эйлера):
; . (3.2)
Определение 2. Функция называется аналитической (регулярной) в данной точке , если она дифференцируема как в самой точке Z, так и в некоторой ее окрестности.
Определение 3. Функция называется аналитической в области D, если она аналитична в каждой точке этой области.
Для любой аналитической функции имеем
. (3.3)
Заметим, что формулы дифференцирования ФКП аналогичны соответствующим формулам дифференцирования функций действительной переменной.
Пример 1. Показать, что функция аналитична и найти .
Решение. Имеем , то есть , . Поэтому , , , и, следовательно, условия (3.2) выполняются во всей плоскости; по первой из формул (3.3) имеем .
Пример 2. Является ли функция аналитической хотя бы в одной точке?
Решение. Имеем , так что , . Условия Коши-Римана имеют вид: , и удовлетворяются только в точке (0,0). Следовательно, функция дифференцируема только в точке (0,0) и нигде не аналитична. По определению (3.1) запишем . Таким образом, производная существует и равна нулю.
< Предыдущая | Следующая > |
---|