5.2. Описание движения точки с помощью осей естественного трехгранника
Подвижный базис, который сопровождает точку М при её движении по кривой, во втором разделе назван Естественным базисом или Трехгранником Френе (рис. 2.1). Кривую, которая образуется при движении материальной точки, называют траекторией. В каждой точке траектории можно построить три взаимно перпендикулярные оси, непосредственно связанные с траекторией. Если начало их помещено в движущуюся точку, то оси, направленные по касательной, нормали и бинормали траектории (
– единичные орты этой системы) называются естественными осями. Вектор скорости
направлен по касательной к траектории
. Вектор ускорения
всегда лежит в соприкасающейся плоскости траектории, и поэтому проекция его на бинормаль равна нулю
Проекции вектора ускорения
на касательную и главную нормаль к траектории равны соответственно
,
, (5.10)
Где
– радиус кривизны траектории в данной точке.
Пример 2. Найти касательное
и нормальное
ускорения точки, а также радиус кривизны
ее траектории, если движение точки выражается уравнениями
,
.
Решение. Для определения касательного и нормального ускорения найдем сначала скорость
Так как
, то
Откуда

Так как радиус кривизны траектории неизвестен, найдем нормальное ускорение
из равенства ![]()
Для этого нужно сначала найти
. Так как
,
, то
Поэтому

Теперь нетрудно определить
, 
Пример 3. Движение электрона в магнитном поле описывается уравнениями
, (5.11)
Где А>0, B>0,
– постоянные величины. Найти уравнение траектории, скорость и ускорение электрона в цилиндрических координатах.
Решение. Зависимость между декартовыми и цилиндрическими координатами выражается соотношениями
, что позволяет записать уравнения движения электрона в цилиндрических координатах в виде:
. (5.12)
Из уравнений (5.12) следует, что электрон движется по винтовой линии на цилиндре радиуса А. Если предположить, что B>0,
> 0, то траектория электрона – правая винтовая линия в полупространстве
(рис. 5.2).
Уравнение траектории находим, исключая
из (5.12):
.
Отсюда видно, что винтовая линия получается “наклеиванием” прямой
на цилиндр радиуса А.
Скорость электрона определим по формуле (5.1). В рассматриваемом случае она принимает вид
. (5.13)
Из уравнений (5.12) следует, что
.
Параметры Ляме определяем на основании формул (5.2):
, (5.14)
. (5.15)
Равенство (5.13) на основании соотношений (5.14) – (5.15) принимает вид
,
.
Отсюда следует, что электрон движется по винтовой линии с постоянной скоростью.
Проекции ускорения электрона определяем по формулам (5.9), которые в рассматриваемом случае имеют следующий вид:
, (5.16)
, (5.17)
. (5.18)
Вычисляя, находим
. (5.19)
Из формул (5.19) следует, что вектор ускорения электрона имеет постоянную величину и направлен вдоль радиуса цилиндра к его оси.
Пример 4. Движение точки М Задано в тороидальной системе координат
(рис. 5.3). Определить вектор скорости и вектор ускорения точки в этих координатах.
Решение. На основании рисунка находим зависимость между декартовыми и тороидальными координатами:

,
,
.
По формулам (5.2) определяем параметры Ляме:
,


Векторы скорости и ускорения определяем из соотношений (5.1) –(5.3) и (5.9):
,
,
![]()

,

,

,
Где
– орты тороидальных осей координат (рис. 5.3).
| < Предыдущая |
|---|