21. Моделирование сезонных колебаний
Простейший подход к моделированию сезонных колебаний – это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.
Общий вид аддитивной модели следующий:
. (2.14)
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (), сезонной () и случайной () компонент.
Общий вид мультипликативной модели выглядит так:
. (2.15)
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (), сезонной () и случайной () компонент.
Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.
Построение аддитивной и мультипликативной моделей сводится к расчету значений , и для каждого уровня ряда.
Процесс построения модели включает в себя следующие шаги.
1) Выравнивание исходного ряда методом скользящей средней.
2) Расчет значений сезонной компоненты .
3) Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных () в аддитивной или () в мультипликативной модели.
4) Аналитическое выравнивание уровней () или () и расчет значений с использованием полученного уравнения тренда.
5) Расчет полученных по модели значений () или ().
6) Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.
Методику построения аддитивной модели рассмотрим в данном разделе методического пособия.
Пример. Построение аддитивной модели временного ряда. Обратимся к данным об объеме правонарушений на таможне за четыре года, представленным в табл. 2.1.
Как видно из табл. 2.1, данный временной ряд содержит сезонные колебания периодичностью 4, т. к. количество правонарушений в первый-второй кварталы ниже, чем в третий-четвертый. Рассчитаем компоненты аддитивной модели временного ряда.
Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии (гр. 3 табл. 2.2).
Таблица 2.1
Год |
Квартал |
Количество возбужденных дел, | |
1999 |
I |
1 |
375 |
II |
2 |
371 | |
III |
3 |
869 | |
IV |
4 |
1015 | |
2000 |
I |
5 |
357 |
II |
6 |
471 | |
III |
7 |
992 | |
IV |
8 |
1020 | |
2001 |
I |
9 |
390 |
II |
10 |
355 | |
III |
11 |
992 | |
IV |
12 |
905 | |
2002 |
I |
13 |
461 |
II |
14 |
454 | |
III |
15 |
920 | |
IV |
16 |
927 |
1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 2.2). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 2.2).
Таблица 2.2
№ квартала, |
Количество правонарушений, |
Итого за четыре квартала |
Скользящая средняя за четыре квартала |
Центрированная скользящая средняя |
Оценка сезонной компоненты |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
375 |
– |
– |
– |
– |
2 |
371 |
2630 |
657,5 |
– |
– |
3 |
869 |
2612 |
653 |
655,25 |
213,75 |
4 |
1015 |
2712 |
678 |
665,5 |
349,5 |
5 |
357 |
2835 |
708,75 |
693,75 |
-336,75 |
6 |
471 |
2840 |
710 |
709,375 |
-238,375 |
7 |
992 |
2873 |
718,25 |
714,125 |
277,875 |
8 |
1020 |
2757 |
689,25 |
703,75 |
316,25 |
9 |
390 |
2757 |
689,25 |
689,25 |
-299,25 |
10 |
355 |
2642 |
660,5 |
674,875 |
-319,875 |
11 |
992 |
2713 |
678,25 |
669,375 |
322,625 |
12 |
905 |
2812 |
703 |
690,625 |
214,375 |
13 |
461 |
2740 |
685 |
694 |
-233 |
14 |
454 |
2762 |
690,5 |
687,75 |
-233,75 |
15 |
920 |
– |
– |
– |
– |
16 |
927 |
– |
– |
– |
– |
Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6 табл. 2.2). Используем эти оценки для расчета значений сезонной компоненты (табл. 2.3). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.
Таблица 2.3
Для данной модели имеем:
.
Корректирующий коэффициент: .
Рассчитываем скорректированные значения сезонной компоненты () и заносим полученные данные в таблицу 6.6.
Проверим равенство нулю суммы значений сезонной компоненты:
.
Шаг 3. Исключим влияние сезонной компоненты, вычитая ее значение из каждого уровня исходного временного ряда. Получим величины (гр. 4 табл. 2.4). Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.
Шаг 4. Определим компоненту данной модели. Для этого проведем аналитическое выравнивание ряда () с помощью линейного тренда. Результаты аналитического выравнивания следующие:
.
Подставляя в это уравнение значения , найдем уровни для каждого момента времени (гр. 5 табл. 2.4).
Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням значения сезонной компоненты для соответствующих кварталов (гр. 6 табл. 2.4).
Таблица 2.4
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
1 |
375 |
-292,448 |
667,448 |
672,700 |
380,252 |
-5,252 |
27,584 |
2 |
371 |
-266,781 |
637,781 |
673,624 |
406,843 |
-35,843 |
1284,721 |
3 |
869 |
268,636 |
600,364 |
674,547 |
943,183 |
-74,183 |
5503,117 |
4 |
1015 |
290,593 |
724,407 |
675,470 |
966,063 |
48,937 |
2394,830 |
5 |
357 |
-292,448 |
649,448 |
676,394 |
383,946 |
-26,946 |
726,087 |
6 |
471 |
-266,781 |
737,781 |
677,317 |
410,536 |
60,464 |
3655,895 |
7 |
992 |
268,636 |
723,364 |
678,240 |
946,876 |
45,124 |
2036,175 |
8 |
1020 |
290,593 |
729,407 |
679,163 |
969,756 |
50,244 |
2524,460 |
9 |
390 |
-292,448 |
682,448 |
680,087 |
387,639 |
2,361 |
5,574 |
10 |
355 |
-266,781 |
621,781 |
681,010 |
414,229 |
-59,229 |
3508,074 |
11 |
992 |
268,636 |
723,364 |
681,933 |
950,569 |
41,431 |
1716,528 |
12 |
905 |
290,593 |
614,407 |
682,857 |
973,450 |
-68,450 |
4685,403 |
13 |
461 |
-292,448 |
753,448 |
683,780 |
391,332 |
69,668 |
4853,630 |
14 |
454 |
-266,781 |
720,781 |
684,703 |
417,922 |
36,078 |
1301,622 |
15 |
920 |
268,636 |
651,364 |
685,627 |
954,263 |
-34,263 |
1173,953 |
16 |
927 |
290,593 |
636,407 |
686,550 |
977,143 |
-50,143 |
2514,320 |
На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.
Рис. 28. График фактических уровней временного ряда
И теоретических, полученных по аддитивной модели.
Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок.
.
Следовательно, можно сказать, что аддитивная модель объясняет 97% общей вариации уровней временного ряда количества правонарушений по кварталам за 4 года.
Шаг 6. Прогнозирование по аддитивной модели. Предположим, что по нашему примеру необходимо дать прогноз об общем объеме правонарушений на I и II кварталы 2003 года. Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда
.
Получим
;
.
Значения сезонных компонент за соответствующие кварталы равны: и . Таким образом,
;
.
Т. е. в первые два квартала 2003 г. следовало ожидать порядка 395 и 422 правонарушений соответственно. Построение мультипликативной модели проводится по той же схеме, что и построение аддитивной модели.
Вопросы для самопроверки
1. В каких случаях для прогнозирования применяют методы прямой экстраполяции?
2. Когда для прогнозирования можно использовать модель тренда?
3. Какие модели трендов обычно используются при прогнозировании в экономике?
4. Перечислите этапы прогнозирования экономических показателей с применением моделей тренда.
5. Что понимают под адекватностью и точностью модели прогнозировании? Как можно проверить адекватность и точность модели прогнозирования?
6. Поясните, почему при прогнозировании наряду с точечным прогнозом рассчитывают и интервальный прогноз?
7. Что такое коэффициент автокорреляции? Как он рассчитывается и что он показывает?
8. Для чего используется критерий Дарбина-Уотсона в моделях временных рядов?
9. Что такое коррелограмма?
10. Поясните технологию расчета точечного интервального прогнозов при использовании моделей тренда.
< Предыдущая | Следующая > |
---|