43. Лекция 11. Многочлены

Основные понятия:

Многочлен; степень многочлена; коэффициенты; старший коэффициент; сложение многочленов; умножение многочленов; делитель; частное; остаток; корень многочлена; кратность корня многочлена; линейные многочлены; схема Горнера; Рациональная дробь; правильная рациональная дробь; простейшие (или элементарные) дроби; метод неопределенных коэффициентов.

Многочленом от переменной степени называется выражение вида:

,

Где ‑ действительные или комплексные числа, называемые коэффициентами, ‑ натуральное число, ‑ переменная величина, принимающая произвольные числовые значения.

Если коэффициент при многочлена отличен от нуля, а коэффициенты при более высоких степенях равны нулю, то число называется степенью многочлена, – старшим коэффициентом, а – старшим членом многочлена. Коэффициент называется свободным членом. Если все коэффициенты многочлена равны нулю, то многочлен называется нулевым и обозначается 0. Степень нулевого многочлена не определена.

Два многочлена называются равными, если они имеют одинаковую степень и коэффициенты при одинаковых степенях равны.

Суммой многочленов и , называется многочлен , где

Произведением многочленов и называется многочлен:

Где .

Легко проверить, что сложение и умножение многочленов ассоциативно, коммутативно и связаны между собой законом дистрибутивности.

Многочлен называется делителем многочлена , если существует многочлен такой, что .

© 2011-2024 Контрольные работы по математике и другим предметам!