1.3.2. Аналитическая геометрия в пространстве

Плоскость.

1. Всякая плоскость в координатном пространстве OXYZ имеет векторное уравнение следующего вида: r ¦ п = p. Здесь

r = xi + yj + zk — радиус-вектор текущей точки плоскости

M(x, у, z); п = i cosa + j cos b + k cosg — единичный вектор, имеющий направление перпендикуляра, опущенного на плоскость из начала координат, a, b, g — углы, образованные этим перпендикуляром с осями координат OX, OY, OZ, и р — длина этого перпендикуляра.

При переходе к координатам это уравнение принимает вид xcos a + ycos b + zcos g - p = 0 (нормальное уравнение плоскости).

2. Уравнение всякой плоскости может быть записано также в виде Ах + Ву +Cz + D = 0 (общее уравнение). Здесь А, B, C можно рассматривать как координаты некоторого вектора

N = Ai + Bj + Ck, перпендикулярного к плоскости. Для приведения общего уравнения плоскости к нормальному виду все члены уравнения надо умножить на нормирующий множитель

где знак перед радикалом противоположен знаку свободного члена D в общем уравнении плоскости.

3. Частные случаи расположения плоскости, определяемой уравнением Ах + Ву +Cz + D = 0:

А = 0; плоскость параллельна оси ОХ;

В = 0; плоскость параллельна оси О^

C = 0; плоскость параллельна оси ОZ;

D = 0; плоскость проходит через начало координат;

А = В = 0; плоскость перпендикулярна оси ОZ (параллельна плоскости ХОY);

А = C = 0; плоскость перпендикулярна оси ОY (параллельна плоскости ХОZ);

В = C = 0; плоскость перпендикулярна оси ОХ (параллельна плоскости YОZ);

А = D = 0; плоскость проходит через ось ОХ;

В = D = 0; плоскость проходит через ось OY;

C = D = 0; плоскость проходит через ось OZ;

А = В = D = 0; плоскость совпадает с плоскостью XOY (z = 0);

А = C = D = 0; плоскость совпадает с плоскостью XOZ (у = 0);

B = C = D = 0; плоскость совпадает с плоскостью YOZ (х = 0).

Если в общем уравнении Ах + By +Cz + D = 0 коэффициент D ф 0, то, разделив все члены уравнения на - D, можно уравнение

плоскости привести к виду^ здесь

. Это уравнение плоскости называется уравнением в отрезках: в нем а — абсцисса точки пересечения плоскости с осью OX, b и с — соответственно ордината и аппликата точек пересечения плоскости с осями OY и OZ.

4. Угол j между плоскостями А1х + В1У + Qz + D1 = 0 и А2х + В2У +C2z + D2 = 0 определяется по формуле

Условие параллельности плоскостей:

Условие перпендикулярности плоскостей:

5. Расстояние от точки М0(х0; у0; z0) до плоскости, определяемой уравнениемНаходится по формуле

Оно равно взятому по абсолютной величине результату подстановки координат точки в нормальное уравнение плоскости; знак результата этой подстановки характеризует взаимное расположение точки M0 и начала координат относительно данной плоскости: этот знак положителен, если точка M0 и начало координат расположены по разные стороны от плоскости, и отрицателен, если они расположены по одну сторону от плоскости.

6. Уравнение плоскости, проходящей через точку М0(х0; у0; z0)

и перпендикулярной к вектору N = Ai + Bj + Ck, имеет вид А(х - х0) + B(y - у0) + C(z - z0) = 0. При произвольных А, В и C последнее уравнение определяет некоторую плоскость, принадлежащую к связке плоскостей, проходящих через точку М0. Его часто поэтому называют уравнением связки плоскостей.

7. Уравнение А1х + B1y +C1z + D1 + А(А2х + B^y +C2z + D2) = 0 при произвольном I определяет некоторую плоскость, проходящую через прямую, по которой пересекаются плоскости, определяемые уравнениями

и

некоторую плоскость, принадлежащую пучку плоскостей, проходящих через эту прямую (в силу чего такое уравнение часто называют уравнением пучка плоскостей). Если плоскости, определяемые уравнениями I и II, параллельны, то пучок плоскостей превращается в совокупность плоскостей, параллельных этим плоскостям.

8. Уравнение плоскости, проходящей через три заданные точки M1(r 1Х M1(Jj), M3(r 3) (Л = x1i + yd + z1k; r2 = x2i + У2 j + z2k; r3 = x3i + y3 j + z3 к), проще всего найти из условия компланарности векторов r - T1, r2 - rl, r3 - rl, где r = xi + yj+zk — радиус-вектор текущей точки искомой плоскости M:

или в координатной форме:


Пример 1.21. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + у + 5z - 1 = 0, 2x + 3у - z + 2 = 0 и через точку М(3, 2, 1).

Решение. Воспользуемся уравнением пучка плоскостей

Значение I определяем из условия, что координаты точки М должны удовлетворять этому уравнению:

Получаем искомое уравнение в виде:

или, умножая на 13 и приводя подобные члены, в виде:

Пример 1.22. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + 3у + 5z - 4 = 0 и X - у - 2z + 7 = 0 и параллельной оси оу.

Решение. Воспользуемся уравнением пучка x + 3у + 5z - 4 + + l(x - у - 2z + 7) = 0, преобразуем уравнение к виду (1 + Х)х + (3 -1)у + (5 - 2l)z + (71 - 4) = 0.

Так как искомая плоскость параллельна оси ординат, то коэффициент при у должен равняться нулю, т. е. 3 - l = 0, I = 3. Подставив значение I в уравнение пучка, получаем

Пример 1.23. Найти уравнение плоскости, проходящей через точки М (2; -1; 4) и N(3; 2; -1) перпендикулярно к плоскости X + у + z - 3 = 0.

Решение. Воспользуемся уравнением плоскости, проходящей через первую из данных точек:

Условие прохождения этой плоскости через вторую точку и условие перпендикулярности определяются равенствами:

Исключая коэффициенты А, В и C из системы уравнений

получаем искомое уравнение в виде:

или

Пример 1.24. Из точки P(2; 3; -5) на координатные плоскости опущены перпендикуляры. Найти уравнение плоскости, проходящей через их основания.

Решение. Основаниями перпендикуляров, опущенных на координатные плоскости, будут следующие точки М1(2; 3; 0), М2(2; 0; -5), М3(0; 3; -5). Напишем уравнение плоскости, проходящей через точки М1, М2, М3, для чего воспользуемся уравнением

находим

или

Пример 1.25. Составить уравнение плоскости, проходящей через точку M (2; 3; 5) и перпендикулярной к вектору

Решение. Достаточно воспользоваться уравнением плоскости, проходящей через данную точку и перпендикулярной к данному вектору:

Прямая.

1. Прямая может быть задана уравнениями 2-х плоскостей

пересекающихся по этой прямой.

2. Исключив поочередно х и у из предыдущих уравнений, получим уравнения х = аz + с, у = bz + d. Здесь прямая определена двумя плоскостями, проектирующими ее на плоскости хoz и yoz.

3. Если даны две точки M(x1, у1, z1) и N(x2, у2, z2), то уравнения прямой, проходящей через них, будут иметь вид:

4. Так называемые канонические уравнения

определяют прямую, проходящую через точку M(x1, у1, z1)

и параллельную вектору S = li + mj + nk. В частности, эти уравнения могут быть записаны в виде:

где a, b и g — углы, образованные прямой с осями координат.

5. От канонических уравнений прямой, вводя параметр t, нетрудно перейти к параметрическим уравнениям прямой:

6. Угол между двумя прямыми, заданными их каноническими

уравнениями


опре-

деляется по формуле

перпендикулярности двух прямых:

условие параллельности двух прямых:


7. Необходимое и достаточное условие расположения двух прямых, заданных их каноническими уравнениями, в одной плоскости (условие компланарности двух прямых):

Если величины /1, т\, П1 непропорциональны величинам /2, m2, «2, то указанное соотношение является необходимым и достаточным условием пересечения двух прямых в пространстве.

условие параллельности прямой и плоскости: условие перпендикулярности прямой и плоскости:

Определяется по формуле


9. Для определения точки пересечения прямой

С плоскостью Ах + Ву + Cz + D = 0 нужно решить совместно их уравнения, для чего следует воспользоваться параметрическими уравнениями прямой x = /t + X0, у = mt + у0, z = nt + z0:

а) если А/ + Вт + Cn ф 0, то прямая пересекает плоскость в одной точке;

б) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D ф 0, то прямая параллельна плоскости;

в) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D = 0, то прямая лежит в плоскости.

Пример 1.26. Привести к каноническому виду уравнения прямой 2х - у + 3z - 1 = 0 и 5х + 4у - z - 7 = 0.

Решение. Исключив вначале у, а затем z, получим:

Если разрешим каждое из уравнений относительно х, то будем иметь:

отсюда

Второй способ: найдем вектор S = li + mj + nk, параллельный искомой прямой. Так как он должен быть перпендикулярен к нормальным векторам заданных плоскостей N1 = 2i - j + 3k и N2= 5i + 4 j - k, то за него можно принять векторное произведение векторов N1 и N2.

Таким образом, l = -11; m = 17; n = 13.

За точку M1(x1, у1, z1), через которую проходит искомая прямая, можно принять точку пересечения ее с любой из координатных плоскостей, например с плоскостью yoz. Т ак как при этом x1 = 0, то координаты y1 и z1 этой точки определятся из системы уравнений заданных плоскостей, если в них положить х = 0:

Решая эту систему, находим у1 = 2; z1 = 1.

Итак, искомая прямая определяется уравнениями:

Мы получили прежний ответ.

Пример 1.27. Построить прямую

Решение. Искомую прямую можно построить как линию пересечения плоскостей. Для этого напишем уравнения плоскостей, которыми определена прямая, в отрезках на осях:

Пример 1.28. Из начала координат опустить перпендикуляр на прямую

Решение. Составим уравнение плоскости, проходящей через начало координат и перпендикулярной заданной прямой: 2х + 3у + z = 0. (Для этой плоскости можно принять А = l; B = m; C = n; D = 0; использовано условие перпендикулярности прямой и плоскости, см. п. 8 введения к настоящему разделу).

Найдем точку пересечения этой плоскости и данной прямой. Параметрические уравнения прямой имеют вид:

Построив данные плоскости, мы получим искомую прямую как линию пересечения этих плоскостей (рис. 20).

Для определения t имеем уравнение:

Остается составить уравнения прямой, проходящей через начало координат и через точку М (см. п. 3 введения к настоящему разделу):

Пример 1.29. В уравнениях прямойОпределить

параметр n так, чтобы эта прямая пересекалась с прямой

, и найти точку их пересечения.

Решение. Для нахождения параметра n используем условие пересечения 2-х прямых:

Отсюда следует:

или

Следовательно, уравнения пересекающихся прямых таковы: искомой:

заданной:

Для вычисления координат точки пересечения этих прямых выразим из первого уравнения х и у через z: х = 2z, у = -3z. Подставляя их значения в равенствоИмеем,

отсюда z = 1. Зная z, находим х и у: х = 2z = 2, у = -3z = -3. Следовательно M(2; -3; 1).

Пример 1.30. Прямая задана каноническими уравнениями

Составить общие уравнения этой прямой.

Решение. Канонические уравнения прямой можно записать в виде системы двух независимых уравнений:

Получили общие уравнения прямой, которая теперь задана пересечением 2-х плоскостей, одна из которых 5х - 3у - 13 = 0 параллельна оси Oz, а другая х + 3z - 11 = 0 параллельна оси Oy.

Пример 1.31. Найти координаты точки M, делящей попалам отрезок прямой

заключенный между плоскостями хoz и xoy.

Решение. Найдем точку А пересечения прямой с плоскостью хoz, полагая в уравнениях прямой у = 0. Тогда получим:

отсюда x = 2,6; z = 2,8. Тогда А(2,6; 0; 2,8).


отсюда X = 11, у = 14, или В(11; 14; 0).

Определяем координаты точки М, делящей отрезок АВ пополам:

Следовательно, координаты искомой точки М будут: М(6,8; 7; 1,4).

Пример 1.32. Составить уравнение плоскости, проходящей через прямую

параллельной прямой

Решение. Составим уравнение пучка плоскостей, проходящих через первую из данных прямых:

которое делим на а ф 0, и пусть b /а = I:

Аналогично, полагая в уравнениях прямой z = 0, найдем координаты точки В пересечения прямой с плоскостью хоу:

69

В этом пучке нужно выбрать плоскость, параллельную 2-й данной прямой. Из условия параллельности плоскости и прямой, имеем:

Отсюда l = 1.

Подставляя I = 1 в уравнение пучка плоскостей, получим: Тогда искомое уравнение плоскости будет:

Пример 1.33. Дана прямая Найти ее проекцию на плоскость

Решение. Нужно найти плоскость, которая проходит через данную прямую перпендикулярно к данной плоскости; тогда искомая проекция определится как пересечение этой плоскости с данной.

Составим уравнение пучка плоскостей, проходящих через данную прямую:

Эта плоскость должна быть перпендикулярной к данной плоскости, что можно записать как:

отсюда I = 1.

70

Тогда уравнение плоскости, проходящей через данную прямую и перпендикулярной данной плоскости, будет:

или

Проекция данной прямой на данную плоскость определяется как прямая пересечения плоскостей:

Запишем эту прямую в каноническом виде. Найдем на прямой какую-либо точку. Для этого положим, например х0 = 1, и система запишется в виде:

Отсюда, у0 = 1, z0 = 0, т. е. точка M(1; 1; 0) принадлежит искомой прямой.

Направляющий вектор прямой S = (l; m; n) найдем из того условия, что он перпендикулярен нормальным векторам

N1 = (2; -3; -2) и N2 = (5; 2; 2) плоскостей, определяющих искомую прямую.

В качестве S берем векторное произведение векторов N1 и N2 , т. е.

Тогда искомое уравнение в каноническом виде будет:

Раздел 2

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

© 2011-2024 Контрольные работы по математике и другим предметам!