Вариант № 17

Задача 1(см. рис. 1)

Рассм.

.

Задача 2

Пусть , т. е. ;

след., вектор .

Задача 3

Пусть - искомый угол между векторами ; по усл-ю задачи ,

Т. е.

.

Задача 4

Рассм. ;

вычислим ; ; .

Задача 5

Так как вектор , то его координаты можно записать в виде: ;

По условию задачи вектор образует тупой угол с осью , след., , т. е. ;

Рассм. ;

Но ; .

Задача 6

1) , где ;

;

2) ;

Направл. косинусы вектора : ; ; .

Задача 7

Площадь параллелограмма, построенного на векторах , равна модулю векторного произведения этих векторов ;

Рассм. ;

;

По условию .

Задача 8

Точки Лежат в одной плоскости тогда и только тогда, когда векторы

Компланарны (т. е. их смешанное произведение );

Рассм. ;

;

Задача 9

1)составим ур-е высоты : рассм. в-р ;

Рассм. т. и рассм. в-р ; тогда по условию задачи и и, след., ур-е прямой , проходящей через Перпендикулярно в-ру , можно записать в виде: т. е. ; ;

2) определим острый угол между прямыми по ф-ле: , где , а ;

.

Задача 10

1) Составим уравнение стороны как прямой, проходящей через точку Параллельно

Прямой ;

2) составим уравнение стороны как прямой, проходящей через точку Параллельно

Прямой ;

3) определим площадь ромба :

Определим координаты точки как точки пересечения прямых :

;

Определим координаты точки как точки пересечения прямых :

;

Рассм. векторы: ;

Рассм. векторное произведение: ;

; площадь ромба равна .

Задача 11

Пусть - искомая плоскость; рассм. направл. вектор оси ;

Рассм. вектор ;

Рассм. норм. вектор ;

Рассм. произв. т. и рассм. вектор ;

, т. е. ;

.

Задача 12

Через точку провести прямую , параллельную двум плоскостям: .

Рассм. норм. векторы ; рассм. направл. вектор прямой : ;

Рассм. ; запишем канонические ур-я прямой Как ур-я прямой, проходящей через т. А параллельно вектору : ;

Параметрические ур-я прямой :

Задача 13

Составить уравнение высоты, опущенной из вершины треугольной пирамиды на основание , если

Рассм. векторы ; рассм. векторное произв-е ;

Рассм. ; вектор перпендикулярен плоскости основания , след. его можно взять в качестве направл. вектора искомой высоты пирамиды ;

Составим теперь уравнение высоты Как уравнение прямой, проходящей через точку параллельно вектору : .

Задача 16

Перейти в уравнении к полярным координатам и построить кривую: .

Перейдём к полярным координатам по формулам:

Уравнение кривой Примет вид:

Задача 17

1) вычисление определителя 3-го порядка:

A) Непосредственное вычисление (по правилу треугольников):

Б) разложение по 2-му столбцу:

;

2)вычисление определителя 4-го порядка:

.

Задача 18

Запишем данную систему уравнений в матричной форме:

, (1) , где ; ; ;

Рассм. опред-ль матрицы : ,

след., матр. - невырожденная и можно применять формулы Крамера и вычислять обратную

матр. ;

1) решим с – му ур – й (1) по правилу Крамера, т. е. с помощью формул: , , ,

Где ,

;

;

;

, , ;

реш–е с–мы ур–й (1) в коорд. форме:

Вектор–решение с-мы (1): ;

2)получим реш–е с–мы ур–й (1) с помощью обратной матр. :

, след., матр.- невырожденная и существует обратная матр. ;

Умножим рав-во (1) слева на матрицу : , ;

Вычислим обратную матр. :

Находим алгебр. дополнения для всех эл-тов матрицы и составим из них м-цу :

транспонируем м-цу и получим «присоединённую» м-цу

Разделим все эл-ты присоедин. м-цы на опр-ль и получим обратную матр. :

;

Находим теперь вектор-решение :

;

3)решим с – му ур – й (1) методом Гаусса:

;

Задача 19

Выпишем расширенную матрицу данной системы ур-й и приведём её к ступенчатому виду:

;

Имеем ;

Так как , то по теореме Кронекера-Капелли данная система ур-й совместна, а так как , то система имеет бесконечное множество решений;

Объявим свободной переменной и выпишем общее решение системы в коорд. форме:

общее решение данной системы ур-й:

Задача 20

Запишем данные преобразования в матричной форме: , где матрицы и

Вектор-столбцы имеют вид:

;

Рассм. ;

Вычислим матрицу

Задача 21

Вычислим ранг системы векторов методом Гаусса, т. е. выпишем матрицу их координат и приведём её к ступенчатому виду:

;

Ранг матрицы , след. данная система векторов линейно независима.

Задача 23

Задан многочлен ;

А) найти корни многочлена;

Б) разложить многочлен по корням;

В) разложить многочлен на множители только с действительными коэффициентами.

А) ; разделим На :

Рассм. теперь ур – е ; ;

Б) разложение многочлена на линейные множители:

;

Разложение многочлена на множители только с действительными коэффициентами:

.

Задача 24(а)

Установить вид и построить линию, заданную уравнением: .

;

;

; , - гипербола с центром в точке .

Задача 25

Привести уравнение поверхности 2-го порядка к каноническому виду, определить вид поверхности.

;

;

;

; ;

Перейдём к новым координатам по формулам: ;

, - эллипсоид с центром в точке и полуосями .

Задача026

.

1) Находим собств. значения линейного преобразования , т. е. корни характеристического уравнения :

Рассм.

;

- собств. значения (действ. и различные ) лин. преобр-я ;

2) находим собств. векторы линейного преобразования , соотв. собств. значениям :

А) рассм. ;

Рассм.

Пусть , тогда вектор ;

Б) рассм.

;

Рассм.

Пусть , тогда вектор ;

В) рассм.

;

рассм.

Пусть , тогда вектор ;

След., собств. векторы линейного преобразования суть:

; ; .

© 2011-2024 Контрольные работы по математике и другим предметам!