Вариант контрольной 07
Вариант 7
Задача 1. Вычислить определенный интеграл методом замены переменной с точностью до двух знаков после запятой.
Задача 2. Вычислить определенный интеграл методом интегрирования по частям с точностью до двух знаков после запятой.
Задача 3. Вычислить определенный интеграл с точностью до двух знаков после запятой, выделяя в знаменателе полный квадрат.
Задача 4. Вычислить площадь фигуры, ограниченной графиками функций:
Задача 5. Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями:
Астроида симметрична относительно оси 0х, при этом точке , а точке . Поэтому:
Задача 6. Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями в полярных координатах
Решение:
Задача 7.. Вычислить длину дуги кривой:
Решение:
Задача 8. Вычислить длину дуги кривой:
;
Решение.
Задача 9. Вычислить длину дуги кривой:
;
Решение.
Задача 10. Вычислить объём тела, ограниченного поверхностями ,
Решение: Имеем тело (эллиптический параболоид) с сечениями параллельно XOY, зависящими только от Z:.
Значит, объем тела:
Сечение, перпендикулярное оси OZ – эллипс:
Площадь эллипса:
.
Задача 11. Вычислить объем тела, образованного вращением фигуры, ограниченной графиками функций. Ось вращения OХ.
Решение: Находим точки пересечения графиков
Задача 12. Найти координаты центра масс однородной плоской кривой L: дуга логарифмической спирали
Рассмотрим отдельно:
Рассмотрим отдельно:
Задача 13. Найти статический момент относительно оси Ох фигуры, ограниченной линиями: .
Решение: Находим точки пересечения графиков .
Значит фигура ограничена по оси Ох:
Статический момент относительно оси Ох:
Задача 14. Вычислить несобственные интегралы или доказать их расходимость:
А)
Подынтегральная функция определена и непрерывна при .
Значит, несобственный интеграл:
Несобственный интеграл сходится.
Б)
Подынтегральная функция определена и непрерывна при и При . Значит, несобственный интеграл:
Несобственный интеграл сходится.
Задача 15. Исследовать сходимость интеграла от неотрицательной функции:
Подынтегральная функция определена и непрерывна при .
Оценим подынтегральную функцию при
Следовательно: Поскольку интеграл сходится, то по признаку сравнения сходится исходный несобственный интеграл.
< Предыдущая | Следующая > |
---|