Вариант № 12

Вар.12

Задача 1: Найти область определения функции . Нарисовать область на координатной плоскости.

Область определения функции , т. е. границей области определения данной функции будут прямые и . Точки на самих прямых не входят в область определения.

Задача 2: Найти частные производные и полный дифференциал

Задача 3: Вычислить значения частных производных функции в точке

Задача 4: Вычислить значение производной сложной функции , где при

При

Задача 5: Вычислить значения частных производных функции , заданной неявно, в заданной точке

или

;

В точке :

Задача 6: Найти градиент функции и производную по направлению в точке

; ;

Задача 7: Найти уравнения касательной плоскости и нормали к заданной поверхности в точке

Уравнение касательной плоскости:

или

Уравнение нормали:

Задача 8: Найти вторые частные производные функции . Убедиться в том, что

;

Значит

Задача 9: Проверить, удовлетворяет ли функция уравнению:

;

Подставляем полученные значения производных в исходное уравнение:

Следовательно, функция удовлетворяет данному уравнению.

Задача 10: Исследовать функцию на экстремум

;

Т.- стационарная точка

и т. - точка минимума

Задача 11: Найти наибольшее и наименьшее значения функции в области , ограниченной заданными линиями

1) Т.- стационарная точка

; ;

В т. - нет экстремума

2) Исследуем значения функции на границах области :

а) сторона АС:

т.- стационарная точка на

стороне АС, но т.

В т.: и в т.:

в) сторона АОС:

на АОС стационарные

точки: и:

Сравнивая все полученные значения, в которых могут достигаться наибольшее и наименьшее значения, видим, что:

;

Задача 12: Найти условный экстремум функции при

не обращается в нуль ни в одной точке прямой

Составим функцию Лагранжа:

;

, т. е. т.- стационарная точка

Выясним наличие условного экстремума двумя способами:

1)

В т. функция имеет условный минимум в т. и

2) Рассмотрим т. при . Имеем

;

В т.:

Значит: т. - точка условного минимума

© 2011-2024 Контрольные работы по математике и другим предметам!