Вариант № 08

Вар.8

Задача 1: Найти область определения функции . Нарисовать область на координатной плоскости.

Область определения функции , т. е. границей области будет окружность . Область определения данной функции состоит из внешних точек окружности и не включает точки на самой окружности.

Задача 2: Найти частные производные и полный дифференциал

Задача 3: Вычислить значения частных производных функции в точке

Задача 4: Вычислить значение производной сложной функции , где при

При

Задача 5: Вычислить значения частных производных функции , заданной неявно, в заданной точке

или

;

В точке:

Задача 6: Найти градиент функции и производную по направлению в точке

;

Задача 7: Найти уравнения касательной плоскости и нормали к заданной поверхности в точке

Поверхность задана неявно

;

;

Уравнение касательной плоскости:

Уравнение нормали:

Задача 8: Найти вторые частные производные функции . Убедиться в том, что

;

;

Значит

Задача 9: Проверить, удовлетворяет ли функция уравнению:

;

;

Подставляем полученные значения производных в исходное уравнение:

Следовательно, функция удовлетворяет данному уравнению.

Задача 10: Исследовать функцию на экстремум

;

Т.- стационарная точка

и т. - точка минимума

Задача 11: Найти наибольшее и наименьшее значения функции в области , ограниченной заданными линиями

1) Т.- стационарная точка

; ;

и т.- точка

максимума, но т.

2) Исследуем значения функции на границах области :

а) сторона 0А:

на 0А стационарная

точка;

в т.0: и в т. А :

б) сторона АВ:

на АВ стационарная

точка : ;

в) сторона ВС:

на ВС стационарная

точка;

В т. В:И в т. С :

б) сторона С0:

на С0 стационарная

точка

Сравнивая все полученные значения, в которых могут достигаться наибольшее и наименьшее значения, видим, что:

;

;

Задача 12: Найти условный экстремум функции при

не обращается в нуль ни в одной точке прямой

Составим функцию Лагранжа:

;

, т. е. т.- стационарная точка

Выясним наличие условного экстремума двумя способами:

1)

В т. функция имеет условный минимум в т. и

2) Рассмотрим т. при . Имеем

;

В т.: .

Значит: т.- точка условного минимума

© 2011-2024 Контрольные работы по математике и другим предметам!